zoukankan      html  css  js  c++  java
  • [数字信号处理]IIR滤波器的间接设计(C代码)

    1.模拟滤波器的设计

          1.1巴特沃斯滤波器的次数

            根据给定的参数设计模拟滤波器,然后进行变数变换,求取数字滤波器的方法,称为滤波器的间接设计。做为数字滤波器的设计基础的模拟滤波器,称之为原型滤波器。这里,我们首先介绍的是最简单最基础的原型滤波器,巴特沃斯低通滤波器。由于IIR滤波器不具有线性相位特性,因此不必考虑相位特性,直接考虑其振幅特性。

           在这里,N是滤波器的次数,Ωc是截止频率。从上式的振幅特性可以看出,这个是单调递减的函数,其振幅特性是不存在纹波的。设计的时候,一般需要先计算跟所需要设计参数相符合的次数N。首先,就需要先由阻带频率,计算出阻带衰减
    将巴特沃斯低通滤波器的振幅特性,直接带入上式,则有

    最后,可以解得次数N为

    当然,这里的N只能为正数,因此,若结果为小数,则舍弃小数,向上取整。

          1.2巴特沃斯滤波器的传递函数

             巴特沃斯低通滤波器的传递函数,可由其振幅特性的分母多项式求得。其分母多项式

    根据S解开,可以得到极点。


    上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。


           1.3巴特沃斯滤波器的实现(C语言)

              首先,是次数的计算。次数的计算,我们可以由下式求得。
             

    其对应的C语言程序为

       N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / 
    	 	            log10 (Stopband/Cotoff) ));

             然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,


    这样的话,实部与虚部就还可以分开来计算。其代码实现为

    typedef struct 
    {
        double Real_part;
        double Imag_Part;
    } COMPLEX;
    
    
    COMPLEX poles[N];
    
    for(k = 0;k <= ((2*N)-1) ; k++)
    {
        if(Cotoff*cos((k+dk)*(pi/N)) < 0)
        {
            poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
    	  poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));	   
            count++;
    	    if (count == N) break;
        }
    } 


           计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样


    这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,

    int Complex_Multiple(COMPLEX a,COMPLEX b,
    	             double *Res_Real,double *Res_Imag)
    	
    {
           *(Res_Real) =  (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
           *(Res_Imag)=  (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);	   
    	 return (int)1; 
    }

    有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设

    这个时候,其传递函数为

    将其乘开,其大致的关系就像下图所示一样。


    计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为

         Res[0].Real_part = poles[0].Real_part; 
         Res[0].Imag_Part= poles[0].Imag_Part;
         Res[1].Real_part = 1; 
         Res[1].Imag_Part= 0;
    
        for(count_1 = 0;count_1 < N-1;count_1++)
        {
    	     for(count = 0;count <= count_1 + 2;count++)
    	     {
    	         if(0 == count)
    		    {
     	                Complex_Multiple(Res[count], poles[count_1+1],
    						           &(Res_Save[count].Real_part),
    						           &(Res_Save[count].Imag_Part));
    	         }
    	         else if((count_1 + 2) == count)
    	         {
    	               Res_Save[count].Real_part  += Res[count - 1].Real_part;
    			     Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
    	         }		  
    		     else 
    		     {
     	                Complex_Multiple(Res[count], poles[count_1+1],
    						           &(Res_Save[count].Real_part),
    						           &(Res_Save[count].Imag_Part));				
    			 1     Res_Save[count].Real_part  += Res[count - 1].Real_part;
    			      Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
    		    }
    	     }
           *(b+N) = *(a+N);
      }

    到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。

    2.双1次z变换

          2.1双1次z变换的原理

            我们为了将模拟滤波器转换为数字滤波器的,可以用的方法很多。这里着重说说双1次z变换。我们希望通过双1次z变换,建立一个s平面到z平面的映射关系,将模拟滤波器转换为数字滤波器。
            和之前的例子一样,我们假设有如下模拟滤波器的传递函数。

    将其做拉普拉斯逆变换,可得到其时间域内的连续微分方程式,

    其中,x(t)表示输入,y(t)表示输出。然后我们需要将其离散化,假设其采样周期是T,用差分方程去近似的替代微分方程,可以得到下面结果

    然后使用z变换,再将其化简。可得到如下结果

    从而,我们可以得到了s平面到z平面的映射关系,即

    由于所有的高阶系统都可以视为一阶系统的并联,所以,这个映射关系在高阶系统中,也是成立的。

    然后,将关系式

    带入上式,可得

    到这里,我们可以就可以得到Ω与ω的对应关系了。


             这里的Ω与ω的对应关系很重要。我们最终的目的设计的是数字滤波器,所以,设计时候给的参数必定是数字滤波器的指标。而我们通过间接设计设计IIR滤波器时候,首先是要设计模拟滤波器,再通过变换,得到数字滤波器。那么,我们首先需要做的,就是将数字滤波器的指标,转换为模拟滤波器的指标,基于这个指标去设计模拟滤波器。另外,这里的采样时间T的取值很随意,为了方便计算,一般取1s就可以。

           2.2双1次z变换的实现(C语言)

             我们设计好的巴特沃斯低通滤波器的传递函数如下所示。
         
    我们将其进行双1次z变换,我们可以得到如下式子

    可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。

    for(Count = 0;Count<=N;Count++)
    	{    	
    	       for(Count_Z = 0;Count_Z <= N;Count_Z++)
    	      	{
    	      	     Res[Count_Z] = 0;
    		     Res_Save[Count_Z] = 0;	 
    	      	}
                    Res_Save [0] = 1;
    	       for(Count_1 = 0; Count_1 < N-Count;Count_1++)
    	      	{
    			  for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
    	      		{
    	      		    if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];	
                      else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
    			                Res[Count_2] += -Res_Save[Count_2 - 1]; 
                      else  Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
      			  for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		         {
     		              Res_Save[Count_Z]  =  Res[Count_Z] ;
    			         Res[Count_Z]  = 0;
    		         }			
    	      	}
    		for(Count_1 = (N-Count); Count_1 < N;Count_1++)
    	      	{
                            for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
    	      		{
    	      		     if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];	
    			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
    			                  Res[Count_2] += Res_Save[Count_2 - 1];
    			     else  
    			           Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];	
    			 }
    		          for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		          {
     		               Res_Save[Count_Z]  =  Res[Count_Z] ;
    			       Res[Count_Z]  = 0;
    		          }
    	      	}
    	        for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		{
                        *(az+Count_Z) +=  pow(2,N-Count) * (*(as+Count)) *
                           Res_Save[Count_Z];
    	            *(bz+Count_Z) +=  (*(bs+Count)) * Res_Save[Count_Z];		     
    		 }	
    	}
    

    到此,我们就已经实现了一个数字滤波器。


    3.IIR滤波器的间接设计代码(C语言)

    #include <stdio.h>
    #include <math.h>
    #include <malloc.h>
    #include <string.h>
    
    
    #define     pi     ((double)3.1415926)
    
    
    struct DESIGN_SPECIFICATION
    {
        double Cotoff;   
        double Stopband;
        double Stopband_attenuation;
    };
    
    typedef struct 
    {
        double Real_part;
        double Imag_Part;
    } COMPLEX;
    
    
    
    int Ceil(double input)
    {
         if(input != (int)input) return ((int)input) +1;
         else return ((int)input); 
    }
    
    
    int Complex_Multiple(COMPLEX a,COMPLEX b
    	                                 ,double *Res_Real,double *Res_Imag)
    	
    {
           *(Res_Real) =  (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
           *(Res_Imag)=  (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);	   
    	 return (int)1; 
    }
    
    
    int Buttord(double Cotoff,
    	             double Stopband,
    	             double Stopband_attenuation)
    {
       int N;
    
       printf("Wc =  %lf  [rad/sec] \n" ,Cotoff);
       printf("Ws =  %lf  [rad/sec] \n" ,Stopband);
       printf("As  =  %lf  [dB] \n" ,Stopband_attenuation);
       printf("--------------------------------------------------------\n" );
    	 
       N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) / 
    	 	            log10 (Stopband/Cotoff) ));
       
       
       return (int)N;
    }
    
    
    int Butter(int N, double Cotoff,
    	           double *a,
    	           double *b)
    {
        double dk = 0;
        int k = 0;
        int count = 0,count_1 = 0;
        COMPLEX poles[N];
        COMPLEX Res[N+1],Res_Save[N+1];
    
        if((N%2) == 0) dk = 0.5;
        else dk = 0;
    
        for(k = 0;k <= ((2*N)-1) ; k++)
        {
             if(Cotoff*cos((k+dk)*(pi/N)) < 0)
             {
                   poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
    		  poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));	   
                  count++;
    	        if (count == N) break;
             }
        } 
    
         printf("Pk =   \n" );   
         for(count = 0;count < N ;count++)
         {
               printf("(%lf) + (%lf i) \n" ,-poles[count].Real_part
    		                         	  ,-poles[count].Imag_Part);
         }
         printf("--------------------------------------------------------\n" );
    	 
         Res[0].Real_part = poles[0].Real_part; 
         Res[0].Imag_Part= poles[0].Imag_Part;
    
         Res[1].Real_part = 1; 
         Res[1].Imag_Part= 0;
    
        for(count_1 = 0;count_1 < N-1;count_1++)
        {
    	     for(count = 0;count <= count_1 + 2;count++)
    	     {
    	          if(0 == count)
    		   {
     	                Complex_Multiple(Res[count], poles[count_1+1],
    						           &(Res_Save[count].Real_part),
    						           &(Res_Save[count].Imag_Part));
    			   //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[0].Real_part,Res_Save[0].Imag_Part);
    	          }
    
    	          else if((count_1 + 2) == count)
    	          {
    	                 Res_Save[count].Real_part  += Res[count - 1].Real_part;
    			    Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;	
    	          }		  
    		    else 
    		    {
     	                 Complex_Multiple(Res[count], poles[count_1+1],
    						           &(Res_Save[count].Real_part),
    						           &(Res_Save[count].Imag_Part));
    
                           //printf( "Res          : (%lf) + (%lf i) \n" ,Res[count - 1].Real_part,Res[count - 1].Imag_Part);
    			    //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
    				
    			    Res_Save[count].Real_part  += Res[count - 1].Real_part;
    			    Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
    			
    			    //printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);
    				
    		    }
    		    //printf("There \n" );
    	     }
    
    	     for(count = 0;count <= N;count++)
    	     {
    	           Res[count].Real_part = Res_Save[count].Real_part; 
                     Res[count].Imag_Part= Res_Save[count].Imag_Part;
    				 
    		    *(a + N - count) = Res[count].Real_part;
    	     }
    		 
    	     //printf("There!! \n" );
    		 
        	}
    
         *(b+N) = *(a+N);
    
         //------------------------display---------------------------------//
         printf("bs =  [" );   
         for(count = 0;count <= N ;count++)
         {
               printf("%lf ", *(b+count));
         }
         printf(" ] \n" );
    
         printf("as =  [" );   
         for(count = 0;count <= N ;count++)
         {
               printf("%lf ", *(a+count));
         }
         printf(" ] \n" );
    
         printf("--------------------------------------------------------\n" );
    
         return (int) 1;
    }
    
    
    int Bilinear(int N, 
    	             double *as,double *bs,
    	             double *az,double *bz)
    {
          int Count = 0,Count_1 = 0,Count_2 = 0,Count_Z = 0;
          double Res[N+1];
    	double Res_Save[N+1]; 
    
          	for(Count_Z = 0;Count_Z <= N;Count_Z++)
    	{
                     *(az+Count_Z)  = 0;
    		    *(bz+Count_Z)  = 0;
    	}
    
    	
    	for(Count = 0;Count<=N;Count++)
    	{    	
    	      for(Count_Z = 0;Count_Z <= N;Count_Z++)
    	      	{
    	      	     Res[Count_Z] = 0;
    		     Res_Save[Count_Z] = 0;	 
    	      	}
                 Res_Save [0] = 1;
    	
    	      for(Count_1 = 0; Count_1 < N-Count;Count_1++)
    	      	{
    			for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
    	      		{
    	      		     if(Count_2 == 0)  
    			     {
    			           Res[Count_2] += Res_Save[Count_2];
    				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			     } 	
    
    			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
    			     {
    			           Res[Count_2] += -Res_Save[Count_2 - 1];   
                                  //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			     } 
    
    			     else  
    			     {
    			           Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
    				    //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			     }				 
    			}
    
                       	//printf( "Res : ");
    		      for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		      {
     		             Res_Save[Count_Z]  =  Res[Count_Z] ;
    			       Res[Count_Z]  = 0;
    				//printf( "[%d]  %lf  " ,Count_Z, Res_Save[Count_Z]);     
    		      }
    		      //printf(" \n" );
    			
    	      	}
    
    		for(Count_1 = (N-Count); Count_1 < N;Count_1++)
    	      	{
                        for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
    	      		{
    	      		     if(Count_2 == 0)  
    			     {
    			           Res[Count_2] += Res_Save[Count_2];
    				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			     } 	
    
    			     else if((Count_2 == (Count_1+1))&&(Count_1 != 0))  
    			     {
    			           Res[Count_2] += Res_Save[Count_2 - 1];
                                  //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			      } 
    
    			     else  
    			     {
    			           Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];
    				     //printf( "Res[%d] %lf  \n" , Count_2 ,Res[Count_2]);
    			     }				 
    			}
    
                       //	printf( "Res : ");
    		      for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		      {
     		             Res_Save[Count_Z]  =  Res[Count_Z] ;
    			       Res[Count_Z]  = 0;
    				//printf( "[%d]  %lf  " ,Count_Z, Res_Save[Count_Z]);     
    		      }
    		       //printf(" \n" );
    	      	}
    
    
                 //printf( "Res : ");
    		for(Count_Z = 0;Count_Z<= N;Count_Z++)
    		{
                        *(az+Count_Z) +=  pow(2,N-Count)  *  (*(as+Count)) * Res_Save[Count_Z];
    			 *(bz+Count_Z) +=  (*(bs+Count)) * Res_Save[Count_Z];		
                         //printf( "  %lf  " ,*(bz+Count_Z));         
    		 }	
    		 //printf(" \n" );
    
    	}
    
    
          
         for(Count_Z = N;Count_Z >= 0;Count_Z--)
         {
              *(bz+Count_Z) =  (*(bz+Count_Z))/(*(az+0));
              *(az+Count_Z) =  (*(az+Count_Z))/(*(az+0));
         }
    	 
    
    	//------------------------display---------------------------------//
          printf("bz =  [" );   
          for(Count_Z= 0;Count_Z <= N ;Count_Z++)
          {
               printf("%lf ", *(bz+Count_Z));
          }
          printf(" ] \n" );
          printf("az =  [" );   
          for(Count_Z= 0;Count_Z <= N ;Count_Z++)
          {
               printf("%lf ", *(az+Count_Z));
          }
          printf(" ] \n" );
          printf("--------------------------------------------------------\n" );
    
    	
    
    	 return (int) 1;
    }
    
    
    
    
    
    int main(void)
    {
         int count;
    
         struct DESIGN_SPECIFICATION IIR_Filter;
    
         IIR_Filter.Cotoff      = (double)(pi/2);         //[red]
         IIR_Filter.Stopband = (double)((pi*3)/4);   //[red]
         IIR_Filter.Stopband_attenuation = 30;        //[dB]
      
         int N;
    
         IIR_Filter.Cotoff = 2 * tan((IIR_Filter.Cotoff)/2);            //[red/sec]
         IIR_Filter.Stopband = 2 * tan((IIR_Filter.Stopband)/2);   //[red/sec]
    
         N = Buttord(IIR_Filter.Cotoff,
    	 	          IIR_Filter.Stopband,
    	 	          IIR_Filter.Stopband_attenuation);
         printf("N:  %d  \n" ,N);
         printf("--------------------------------------------------------\n" );
    
         double as[N+1] , bs[N+1];
         Butter(N, 
                    IIR_Filter.Cotoff,
    	         as,
    	         bs); 
    
         double az[N+1] , bz[N+1];
         
         Bilinear(N, 
    	           as,bs,
    	           az,bz);
    
         printf("Finish \n" );
         return (int)0;
    }
    


    3.间接设计实现的IIR滤波器的性能

           3.1设计指标

                 

            3.2程序执行结果

               使用上述程序,gcc编译通过,执行结果如下。

           其频率响应如下所示。博客地址: http://blog.csdn.net/thnh169/



  • 相关阅读:
    静态构造函数
    js-----Date对象
    JS中Math函数的常用方法
    js 简单数据类型和复杂数据类型的区别
    js new关键字 和 this详解
    JS 对象的三种创建方式
    js 预解析
    JS作用域问题
    js实现斐波那契数列
    JS 三元表达式
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3131099.html
Copyright © 2011-2022 走看看