2的幂次方(power)
题目描述
任何一个正整数都可以用2的幂次方表示。例如:
137=27+23+20
同时约定方次用括号来表示,即ab 可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7=22+2+20 (21用2表示)
3=2+20
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=210 +28 +25 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入
输入:正整数(n≤20000)
输出
输出:符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
1315
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
分析:递归
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #include <ext/rope> #define rep(i,m,n) for(i=m;i<=n;i++) #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++) #define vi vector<int> #define pii pair<int,int> #define mod 1000000007 #define inf 0x3f3f3f3f #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) const int maxn=1e5+10; const int dis[4][2]={{0,1},{-1,0},{0,-1},{1,0}}; using namespace std; using namespace __gnu_cxx; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} int n,m; void work(int now) { if(now==1){printf("2(0)");return;} else if(now==2){printf("2");return;} int p=1,q=0; while(p<=now)q++,p<<=1; q--,p>>=1; if(p==now) { printf("2("); work(q); printf(")"); } else { if(p==2)printf("2+"); else { printf("2("); work(q); printf(")+"); } work(now-p); } } int main() { int i,j,k,t; while(~scanf("%d",&n)) { work(n); printf(" "); } //system ("pause"); return 0; }