zoukankan      html  css  js  c++  java
  • Greedy Change

    Greedy Change
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Billy investigates the question of applying greedy algorithm to different spheres of life. At the moment he is studying the application of greedy algorithm to the problem about change. There is an amount of n coins of different face values, and the coins of each value are not limited in number. The task is to collect the sum x with the minimum amount of coins. Greedy algorithm with each its step takes the coin of the highest face value, not exceeding x. Obviously, if among the coins' face values exists the face value 1, any sum x can be collected with the help of greedy algorithm. However, greedy algorithm does not always give the optimal representation of the sum, i.e. the representation with the minimum amount of coins. For example, if there are face values {1, 3, 4} and it is asked to collect the sum6, greedy algorithm will represent the sum as 4 + 1 + 1, while the optimal representation is 3 + 3, containing one coin less. By the given set of face values find out if there exist such a sum x that greedy algorithm will collect in a non-optimal way. If such a sum exists, find out the smallest of these sums.

    Input

    The first line contains an integer n (1 ≤ n ≤ 400) — the amount of the coins' face values. The second line contains n integers ai(1 ≤ ai ≤ 109), describing the face values. It is guaranteed that a1 > a2 > ... > an and an = 1.

    Output

    If greedy algorithm collects any sum in an optimal way, output -1. Otherwise output the smallest sum that greedy algorithm collects in a non-optimal way.

    Examples
    input
    5
    25 10 5 2 1
    output
    -1
    input
    3
    4 3 1
    output
    6
    分析:据说是论文结论题。
       A Polynomial-time Algorithm for the Change-Making Problem;
       由结论,这个数比a[i]大一点点;
       所以先贪心a[i]-1,然后枚举j(j>i),把a[j]的数目+1,然后再贪心,看是不是数目变大了;

       如果变大了,则取一个最小的答案;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<ll,int>
    #define Lson L, mid, ls[rt]
    #define Rson mid+1, R, rs[rt]
    #define sys system("pause")
    const int maxn=4e2+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t,ans,a[maxn],b[maxn],c[maxn];
    bool flag;
    int solve(int p,int *q)
    {
        int ret=0;
        for(int i=1;i<=n;i++)
        {
            q[i]=p/a[i];
            p%=a[i];
            ret+=q[i];
        }
        return ret;
    }
    int main()
    {
        int i,j;
        scanf("%d",&n);
        rep(i,1,n)scanf("%d",&a[i]);
        rep(i,1,n)
        {
            solve(a[i]-1,b);
            rep(j,i+1,n)
            {
                int now=0,num=0;
                rep(k,1,j-1)now+=a[k]*b[k],num+=b[k];
                now+=a[j]*(b[j]+1),num+=b[k]+1;
                if(solve(now,c)>num)
                {
                    if(!flag)
                    {
                        flag=true;
                        ans=now;
                    }
                    else ans=min(ans,now);
                }
            }
        }
        if(flag)printf("%d
    ",ans);
        else puts("-1");
        //system("Pause");
        return 0;
    }
  • 相关阅读:
    低成本两台服务器备份,SQL SERVER数据库镜像(二)
    Entity Framework多表对一实体,一表对多实体的实现
    数字的与或非处理表中的多个状态(二)
    基于角色的权限原理
    数字与或非处理表中的多个状态(一)
    双服务器同步实施办法
    精彩博文收集目录索引
    个人文章目录索引
    Web常用函数介绍(LoadRunner相关)
    Rhythmbox中文乱码
  • 原文地址:https://www.cnblogs.com/dyzll/p/5962494.html
Copyright © 2011-2022 走看看