zoukankan      html  css  js  c++  java
  • NLP整体流程的代码

    import nltk
    import numpy as np
    import re
    from nltk.corpus import stopwords
    
    # 1 分词1
    text = "Sentiment analysis is a challenging subject in machine learning.
     People express their emotions in language that is often obscured by sarcasm,
      ambiguity, and plays on words, all of which could be very misleading for 
      both humans and computers. There's another Kaggle competition for movie review 
      sentiment analysis. In this tutorial we explore how Word2Vec can be applied to 
      a similar problem.".lower()
    
    text_list = nltk.word_tokenize(text)
    
    #2 q去掉标点符号和停用词
    #去掉标点符号
    english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
    text_list = [word for word in text_list if word not in english_punctuations]
    #去掉停用词
    stops = set(stopwords.words("english"))
    text_list = [word for word in text_list if word not in stops]
    
    #3统计词频
    freq_dist = nltk.FreqDist(text_list)
    freq_list = []
    num_words = len(freq_dist.values())
    for i in range(num_words):
        freq_list.append([list(freq_dist.keys())[i],list(freq_dist.values())[i]])
    freqArr = np.array(freq_list)
    print(freqArr)
    
    #4词性标注
    print(nltk.pos_tag(text_list))
    

      

  • 相关阅读:
    Linux基本命令
    LR之流程
    Jmeter&Ant构建自动化测试平台
    正则表达式
    搭建wordpress-安装xshell
    git本地文件提交
    Git基本操作
    python-之基本语法
    SQL语句之-简单查询
    postman之请求&断言
  • 原文地址:https://www.cnblogs.com/elpsycongroo/p/9369420.html
Copyright © 2011-2022 走看看