zoukankan      html  css  js  c++  java
  • windows 10 安装 pytorch 1.7.1

    1 查看是否有GPU

     下载和安装 Python 3.8

     下载和安装 PyCharm

    2 下载 Anaconda

    https://www.anaconda.com/

    https://www.anaconda.com/products/individual

    https://repo.anaconda.com/archive/Anaconda3-2020.11-Windows-x86_64.exe

    3 安装 Anaconda

     

     

     

    • Anaconda Navigator :用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。
    • Jupyter notebook :基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
    • qtconsole :一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。
    • Spyder :一个使用Python语言、跨平台的、科学运算集成开发环境。

    4 打开Anaconda

    Run as administrator

    5 管理虚环境

    创建虚拟环境,为自己的程序安装单独的虚拟环境.
    创建一个名称为 myenvpy38 的虚拟环境并指定python版本为3.8
    conda create -n myenvpy38 python=3.8

    environment location: E:EprogramfilesAnaconda3envsmyenvpy38

    其中 E:EprogramfilesAnaconda3 是anaconda的安装路径。


    切换虚拟环境
    切换到这个环境, 用activae命令,后面加上要切换的环境名称
    conda activate myenvpy38

    查看所有的环境
    如果忘记了名称我们可以先用
    conda env list


    # To deactivate an active environment, use
    # conda deactivate

    conda env list

    conda list

    安装第三方包
     conda install packageName
     或者
     pip install packageName


    卸载第三方包
     conda remove packageName
      或者
      pip uninstall packageName


    6 安装PyTorch

    以下步骤安装不成功:

    https://pytorch.org/

     

    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch



    The following packages will be downloaded:

        package                    |            build
        ---------------------------|-----------------
        cudatoolkit-10.2.89        |       h74a9793_1       317.2 MB
        libuv-1.40.0               |       he774522_0         255 KB
        lz4-c-1.9.3                |       h2bbff1b_0         131 KB
        mkl-service-2.3.0          |   py38h196d8e1_0          47 KB
        ninja-1.10.2               |   py38h6d14046_0         247 KB
        pillow-8.1.0               |   py38h4fa10fc_0         664 KB
        pytorch-1.7.1              |py3.8_cuda102_cudnn7_0       768.1 MB  pytorch
        torchaudio-0.7.2           |             py38         2.7 MB  pytorch
        torchvision-0.8.2          |       py38_cu102         7.2 MB  pytorch
        ------------------------------------------------------------
                                               Total:        1.07 GB

    The following NEW packages will be INSTALLED:

      blas               pkgs/main/win-64::blas-1.0-mkl
      cudatoolkit        pkgs/main/win-64::cudatoolkit-10.2.89-h74a9793_1
      freetype           pkgs/main/win-64::freetype-2.10.4-hd328e21_0
      intel-openmp       pkgs/main/win-64::intel-openmp-2020.2-254
      jpeg               pkgs/main/win-64::jpeg-9b-hb83a4c4_2
      libpng             pkgs/main/win-64::libpng-1.6.37-h2a8f88b_0
      libtiff            pkgs/main/win-64::libtiff-4.1.0-h56a325e_1
      libuv              pkgs/main/win-64::libuv-1.40.0-he774522_0
      lz4-c              pkgs/main/win-64::lz4-c-1.9.3-h2bbff1b_0
      mkl                pkgs/main/win-64::mkl-2020.2-256
      mkl-service        pkgs/main/win-64::mkl-service-2.3.0-py38h196d8e1_0
      mkl_fft            pkgs/main/win-64::mkl_fft-1.2.0-py38h45dec08_0
      mkl_random         pkgs/main/win-64::mkl_random-1.1.1-py38h47e9c7a_0
      ninja              pkgs/main/win-64::ninja-1.10.2-py38h6d14046_0
      numpy              pkgs/main/win-64::numpy-1.19.2-py38hadc3359_0
      numpy-base         pkgs/main/win-64::numpy-base-1.19.2-py38ha3acd2a_0
      olefile            pkgs/main/noarch::olefile-0.46-py_0
      pillow             pkgs/main/win-64::pillow-8.1.0-py38h4fa10fc_0
      pytorch            pytorch/win-64::pytorch-1.7.1-py3.8_cuda102_cudnn7_0
      six                pkgs/main/win-64::six-1.15.0-py38haa95532_0
      tk                 pkgs/main/win-64::tk-8.6.10-he774522_0
      torchaudio         pytorch/win-64::torchaudio-0.7.2-py38
      torchvision        pytorch/win-64::torchvision-0.8.2-py38_cu102
      typing_extensions  pkgs/main/noarch::typing_extensions-3.7.4.3-py_0
      xz                 pkgs/main/win-64::xz-5.2.5-h62dcd97_0
      zstd               pkgs/main/win-64::zstd-1.4.5-h04227a9_0


    Proceed ([y]/n)? y


    Downloading and Extracting Packages
    torchaudio-0.7.2     | 2.7 MB    | ######5                                                                      |   9%
    pytorch-1.7.1        | 768.1 MB  |                                                                                    |   0%
    torchvision-0.8.2    | 7.2 MB    | #2                                                                                 |   2%
    ninja-1.10.2         | 247 KB    | ################################################################################## | 100%
    mkl-service-2.3.0    | 47 KB     | ################################################################################## | 100%
    libuv-1.40.0         | 255 KB    | ################################################################################## | 100%
    pillow-8.1.0         | 664 KB    | ################################################################################## | 100%
    cudatoolkit-10.2.89  | 317.2 MB  | ###3                                                                               |   4%
    lz4-c-1.9.3          | 131 KB    | ################################################################################## | 100%

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchaudio-0.7.2-py38.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/pytorch-1.7.1-py3.8_cuda102_cudnn7_0.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchvision-0.8.2-py38_cu102.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    ("Connection broken: ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None)", ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None))


    (myenvpy38) E:EprogramfilesAnaconda3myenv>


    改变安装策略:
    1 查看显卡对应的 CUDA
    C盘搜索 nvcuda64.dll,右键,属性

     2 下载 cuda_11.0.3

    https://developer.nvidia.com/cuda-toolkit-archive

    http://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_451.82_win10.exe

    文件3G左右,用迅雷下载比较快

    3 安装 cuda_11.0.3

    默认都是必须安装在C盘,超过4.5GB空间。自定义安装的时候可以选择路径 e:Eprogramfilescuda11dev,大部分文件仍然安装到C盘了(C:Program FilesNVIDIA GPU Computing Toolkit)

    检查是否安装成功

    e:Eprogramfilescuda11devbin>nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2020 NVIDIA Corporation
    Built on Wed_Jul_22_19:09:35_Pacific_Daylight_Time_2020
    Cuda compilation tools, release 11.0, V11.0.221
    Build cuda_11.0_bu.relgpu_drvr445TC445_37.28845127_0

    e:Eprogramfilescuda11devin>

     

    4 下载与 cuda 相应的 cudnn

    https://developer.nvidia.com/rdp/cudnn-archive

    https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.4/11.0_20200923/cudnn-11.0-windows-x64-v8.0.4.30.zip

    解压 cudnn-11.0-windows-x64-v8.0.4.30.zip

    前面安装的cuda的路径下也有这三个对应的文件夹(bin,include,lib),我们要做的就是用cudnn的三个文件夹覆盖cuda中对应的三个文件夹.直接粘过去就行了!

    测试是否将cudnn安装好
    首先进入CUDA的安装路径 -> extras -> demo_suite,  E:Eprogramfilescuda11devextrasdemo_suite 里面有两个测试程序,一个是bandwidthTest.exe,一个是deviceQuery.exe

    然后可以在demo_suite这个文件夹下打开cmd,运行那两个exe,结果如下图

    E:Eprogramfilescuda11devextrasdemo_suite>bandwidthTest.exe
    [CUDA Bandwidth Test] - Starting...
    Running on...

     Device 0: GeForce GTX 1050
     Quick Mode

     Host to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     12564.8

     Device to Host Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     12848.8

     Device to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     95124.9

    Result = PASS

    NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

    E:Eprogramfilescuda11devextrasdemo_suite>deviceQuery.exe
    deviceQuery.exe Starting...

     CUDA Device Query (Runtime API) version (CUDART static linking)

    Detected 1 CUDA Capable device(s)

    Device 0: "GeForce GTX 1050"
      CUDA Driver Version / Runtime Version          11.0 / 11.0
      CUDA Capability Major/Minor version number:    6.1
      Total amount of global memory:                 4096 MBytes (4294967296 bytes)
      ( 5) Multiprocessors, (128) CUDA Cores/MP:     640 CUDA Cores
      GPU Max Clock rate:                            1493 MHz (1.49 GHz)
      Memory Clock rate:                             3504 Mhz
      Memory Bus Width:                              128-bit
      L2 Cache Size:                                 524288 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
      Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
      Total amount of constant memory:               zu bytes
      Total amount of shared memory per block:       zu bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  2048
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          zu bytes
      Texture alignment:                             zu bytes
      Concurrent copy and kernel execution:          Yes with 5 copy engine(s)
      Run time limit on kernels:                     Yes
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Disabled
      CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
      Device supports Unified Addressing (UVA):      Yes
      Device supports Compute Preemption:            Yes
      Supports Cooperative Kernel Launch:            Yes
      Supports MultiDevice Co-op Kernel Launch:      No
      Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0, NumDevs = 1, Device0 = GeForce GTX 1050
    Result = PASS

    5 安装PyTorch

    =====================================================

     conda activate myenvpy38

    镜像源配置一下, 仍然特别慢
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
    conda config --set show_channel_urls yes

    conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch

     =====================================================

    在下载的过程中下载torch1.7.1的时候比较慢,下载的过程中还会超时,故直接拷贝下载地址下载whl文件,安装whl文件。

    单独下载:

    https://download.pytorch.org/whl/torch_stable.html

    https://download.pytorch.org/whl/cu110/torchvision-0.8.2%2Bcu110-cp38-cp38-win_amd64.whl

    https://download.pytorch.org/whl/cu110/torch-1.7.1%2Bcu110-cp38-cp38-win_amd64.whl

    https://download.pytorch.org/whl/torchaudio-0.7.2-cp38-none-win_amd64.whl

     conda activate myenvpy38

    pip --default-timeout=1000 install -U numpy  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U matplotlib.pyplot -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
    pip --default-timeout=1000 install -U matplotlib  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
     
    pip --default-timeout=1000 install -U pandas -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U sklearn -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U typing-extensions -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    安装有先后顺序,先torch

     E:EprogramfilesAnaconda3envsmyenvpy38>pip install "D:software orch-1.7.1+cu110-cp38-cp38-win_amd64.whl"

      E:EprogramfilesAnaconda3envsmyenvpy38>pip install D:software orchaudio-0.7.2-cp38-none-win_amd64.whl

     E:EprogramfilesAnaconda3envsmyenvpy38>pip install "D:software orchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl"


    REF
    https://blog.csdn.net/qq_36306288/article/details/111243361

    https://blog.csdn.net/weixin_42144294/article/details/111624608
    https://www.cnblogs.com/chenyameng/p/14273935.html

    https://blog.csdn.net/adong6561975/article/details/106548396/


  • 相关阅读:
    昨天是下了一整天的雨,在家里买了一斤肉和恶小白菜吃
    昨天网上感觉好冷,睡在席子上都是感觉打哈欠
    今天是下雨了,看来是要穿长裤上班了
    昨天用的流量有点多60M
    Python常用模块(3)—— shelve、pickle、json、xml、configparser
    Python常用模块(2)—— os、sys、shutil
    Python常用模块(1)—— time、datetime、randrom
    内置函数
    包的导入使用
    模块的导入使用
  • 原文地址:https://www.cnblogs.com/emanlee/p/14332287.html
Copyright © 2011-2022 走看看