zoukankan      html  css  js  c++  java
  • windows 10 安装 pytorch 1.7.1

    1 查看是否有GPU

     下载和安装 Python 3.8

     下载和安装 PyCharm

    2 下载 Anaconda

    https://www.anaconda.com/

    https://www.anaconda.com/products/individual

    https://repo.anaconda.com/archive/Anaconda3-2020.11-Windows-x86_64.exe

    3 安装 Anaconda

     

     

     

    • Anaconda Navigator :用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。
    • Jupyter notebook :基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
    • qtconsole :一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。
    • Spyder :一个使用Python语言、跨平台的、科学运算集成开发环境。

    4 打开Anaconda

    Run as administrator

    5 管理虚环境

    创建虚拟环境,为自己的程序安装单独的虚拟环境.
    创建一个名称为 myenvpy38 的虚拟环境并指定python版本为3.8
    conda create -n myenvpy38 python=3.8

    environment location: E:EprogramfilesAnaconda3envsmyenvpy38

    其中 E:EprogramfilesAnaconda3 是anaconda的安装路径。


    切换虚拟环境
    切换到这个环境, 用activae命令,后面加上要切换的环境名称
    conda activate myenvpy38

    查看所有的环境
    如果忘记了名称我们可以先用
    conda env list


    # To deactivate an active environment, use
    # conda deactivate

    conda env list

    conda list

    安装第三方包
     conda install packageName
     或者
     pip install packageName


    卸载第三方包
     conda remove packageName
      或者
      pip uninstall packageName


    6 安装PyTorch

    以下步骤安装不成功:

    https://pytorch.org/

     

    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch



    The following packages will be downloaded:

        package                    |            build
        ---------------------------|-----------------
        cudatoolkit-10.2.89        |       h74a9793_1       317.2 MB
        libuv-1.40.0               |       he774522_0         255 KB
        lz4-c-1.9.3                |       h2bbff1b_0         131 KB
        mkl-service-2.3.0          |   py38h196d8e1_0          47 KB
        ninja-1.10.2               |   py38h6d14046_0         247 KB
        pillow-8.1.0               |   py38h4fa10fc_0         664 KB
        pytorch-1.7.1              |py3.8_cuda102_cudnn7_0       768.1 MB  pytorch
        torchaudio-0.7.2           |             py38         2.7 MB  pytorch
        torchvision-0.8.2          |       py38_cu102         7.2 MB  pytorch
        ------------------------------------------------------------
                                               Total:        1.07 GB

    The following NEW packages will be INSTALLED:

      blas               pkgs/main/win-64::blas-1.0-mkl
      cudatoolkit        pkgs/main/win-64::cudatoolkit-10.2.89-h74a9793_1
      freetype           pkgs/main/win-64::freetype-2.10.4-hd328e21_0
      intel-openmp       pkgs/main/win-64::intel-openmp-2020.2-254
      jpeg               pkgs/main/win-64::jpeg-9b-hb83a4c4_2
      libpng             pkgs/main/win-64::libpng-1.6.37-h2a8f88b_0
      libtiff            pkgs/main/win-64::libtiff-4.1.0-h56a325e_1
      libuv              pkgs/main/win-64::libuv-1.40.0-he774522_0
      lz4-c              pkgs/main/win-64::lz4-c-1.9.3-h2bbff1b_0
      mkl                pkgs/main/win-64::mkl-2020.2-256
      mkl-service        pkgs/main/win-64::mkl-service-2.3.0-py38h196d8e1_0
      mkl_fft            pkgs/main/win-64::mkl_fft-1.2.0-py38h45dec08_0
      mkl_random         pkgs/main/win-64::mkl_random-1.1.1-py38h47e9c7a_0
      ninja              pkgs/main/win-64::ninja-1.10.2-py38h6d14046_0
      numpy              pkgs/main/win-64::numpy-1.19.2-py38hadc3359_0
      numpy-base         pkgs/main/win-64::numpy-base-1.19.2-py38ha3acd2a_0
      olefile            pkgs/main/noarch::olefile-0.46-py_0
      pillow             pkgs/main/win-64::pillow-8.1.0-py38h4fa10fc_0
      pytorch            pytorch/win-64::pytorch-1.7.1-py3.8_cuda102_cudnn7_0
      six                pkgs/main/win-64::six-1.15.0-py38haa95532_0
      tk                 pkgs/main/win-64::tk-8.6.10-he774522_0
      torchaudio         pytorch/win-64::torchaudio-0.7.2-py38
      torchvision        pytorch/win-64::torchvision-0.8.2-py38_cu102
      typing_extensions  pkgs/main/noarch::typing_extensions-3.7.4.3-py_0
      xz                 pkgs/main/win-64::xz-5.2.5-h62dcd97_0
      zstd               pkgs/main/win-64::zstd-1.4.5-h04227a9_0


    Proceed ([y]/n)? y


    Downloading and Extracting Packages
    torchaudio-0.7.2     | 2.7 MB    | ######5                                                                      |   9%
    pytorch-1.7.1        | 768.1 MB  |                                                                                    |   0%
    torchvision-0.8.2    | 7.2 MB    | #2                                                                                 |   2%
    ninja-1.10.2         | 247 KB    | ################################################################################## | 100%
    mkl-service-2.3.0    | 47 KB     | ################################################################################## | 100%
    libuv-1.40.0         | 255 KB    | ################################################################################## | 100%
    pillow-8.1.0         | 664 KB    | ################################################################################## | 100%
    cudatoolkit-10.2.89  | 317.2 MB  | ###3                                                                               |   4%
    lz4-c-1.9.3          | 131 KB    | ################################################################################## | 100%

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchaudio-0.7.2-py38.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/pytorch-1.7.1-py3.8_cuda102_cudnn7_0.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/torchvision-0.8.2-py38_cu102.tar.bz2>
    Elapsed: -

    An HTTP error occurred when trying to retrieve this URL.
    HTTP errors are often intermittent, and a simple retry will get you on your way.

    ("Connection broken: ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None)", ConnectionResetError(10054, 'An existing connection was forcibly closed by the remote host', None, 10054, None))


    (myenvpy38) E:EprogramfilesAnaconda3myenv>


    改变安装策略:
    1 查看显卡对应的 CUDA
    C盘搜索 nvcuda64.dll,右键,属性

     2 下载 cuda_11.0.3

    https://developer.nvidia.com/cuda-toolkit-archive

    http://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_451.82_win10.exe

    文件3G左右,用迅雷下载比较快

    3 安装 cuda_11.0.3

    默认都是必须安装在C盘,超过4.5GB空间。自定义安装的时候可以选择路径 e:Eprogramfilescuda11dev,大部分文件仍然安装到C盘了(C:Program FilesNVIDIA GPU Computing Toolkit)

    检查是否安装成功

    e:Eprogramfilescuda11devbin>nvcc -V
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2020 NVIDIA Corporation
    Built on Wed_Jul_22_19:09:35_Pacific_Daylight_Time_2020
    Cuda compilation tools, release 11.0, V11.0.221
    Build cuda_11.0_bu.relgpu_drvr445TC445_37.28845127_0

    e:Eprogramfilescuda11devin>

     

    4 下载与 cuda 相应的 cudnn

    https://developer.nvidia.com/rdp/cudnn-archive

    https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.0.4/11.0_20200923/cudnn-11.0-windows-x64-v8.0.4.30.zip

    解压 cudnn-11.0-windows-x64-v8.0.4.30.zip

    前面安装的cuda的路径下也有这三个对应的文件夹(bin,include,lib),我们要做的就是用cudnn的三个文件夹覆盖cuda中对应的三个文件夹.直接粘过去就行了!

    测试是否将cudnn安装好
    首先进入CUDA的安装路径 -> extras -> demo_suite,  E:Eprogramfilescuda11devextrasdemo_suite 里面有两个测试程序,一个是bandwidthTest.exe,一个是deviceQuery.exe

    然后可以在demo_suite这个文件夹下打开cmd,运行那两个exe,结果如下图

    E:Eprogramfilescuda11devextrasdemo_suite>bandwidthTest.exe
    [CUDA Bandwidth Test] - Starting...
    Running on...

     Device 0: GeForce GTX 1050
     Quick Mode

     Host to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     12564.8

     Device to Host Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     12848.8

     Device to Device Bandwidth, 1 Device(s)
     PINNED Memory Transfers
       Transfer Size (Bytes)        Bandwidth(MB/s)
       33554432                     95124.9

    Result = PASS

    NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

    E:Eprogramfilescuda11devextrasdemo_suite>deviceQuery.exe
    deviceQuery.exe Starting...

     CUDA Device Query (Runtime API) version (CUDART static linking)

    Detected 1 CUDA Capable device(s)

    Device 0: "GeForce GTX 1050"
      CUDA Driver Version / Runtime Version          11.0 / 11.0
      CUDA Capability Major/Minor version number:    6.1
      Total amount of global memory:                 4096 MBytes (4294967296 bytes)
      ( 5) Multiprocessors, (128) CUDA Cores/MP:     640 CUDA Cores
      GPU Max Clock rate:                            1493 MHz (1.49 GHz)
      Memory Clock rate:                             3504 Mhz
      Memory Bus Width:                              128-bit
      L2 Cache Size:                                 524288 bytes
      Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
      Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
      Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
      Total amount of constant memory:               zu bytes
      Total amount of shared memory per block:       zu bytes
      Total number of registers available per block: 65536
      Warp size:                                     32
      Maximum number of threads per multiprocessor:  2048
      Maximum number of threads per block:           1024
      Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      Maximum memory pitch:                          zu bytes
      Texture alignment:                             zu bytes
      Concurrent copy and kernel execution:          Yes with 5 copy engine(s)
      Run time limit on kernels:                     Yes
      Integrated GPU sharing Host Memory:            No
      Support host page-locked memory mapping:       Yes
      Alignment requirement for Surfaces:            Yes
      Device has ECC support:                        Disabled
      CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
      Device supports Unified Addressing (UVA):      Yes
      Device supports Compute Preemption:            Yes
      Supports Cooperative Kernel Launch:            Yes
      Supports MultiDevice Co-op Kernel Launch:      No
      Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
      Compute Mode:
         < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

    deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0, NumDevs = 1, Device0 = GeForce GTX 1050
    Result = PASS

    5 安装PyTorch

    =====================================================

     conda activate myenvpy38

    镜像源配置一下, 仍然特别慢
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
    conda config --set show_channel_urls yes

    conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch

     =====================================================

    在下载的过程中下载torch1.7.1的时候比较慢,下载的过程中还会超时,故直接拷贝下载地址下载whl文件,安装whl文件。

    单独下载:

    https://download.pytorch.org/whl/torch_stable.html

    https://download.pytorch.org/whl/cu110/torchvision-0.8.2%2Bcu110-cp38-cp38-win_amd64.whl

    https://download.pytorch.org/whl/cu110/torch-1.7.1%2Bcu110-cp38-cp38-win_amd64.whl

    https://download.pytorch.org/whl/torchaudio-0.7.2-cp38-none-win_amd64.whl

     conda activate myenvpy38

    pip --default-timeout=1000 install -U numpy  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U matplotlib.pyplot -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
    pip --default-timeout=1000 install -U matplotlib  -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
     
    pip --default-timeout=1000 install -U pandas -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U sklearn -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    pip --default-timeout=1000 install -U typing-extensions -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

    安装有先后顺序,先torch

     E:EprogramfilesAnaconda3envsmyenvpy38>pip install "D:software orch-1.7.1+cu110-cp38-cp38-win_amd64.whl"

      E:EprogramfilesAnaconda3envsmyenvpy38>pip install D:software orchaudio-0.7.2-cp38-none-win_amd64.whl

     E:EprogramfilesAnaconda3envsmyenvpy38>pip install "D:software orchvision-0.8.2+cu110-cp38-cp38-win_amd64.whl"


    REF
    https://blog.csdn.net/qq_36306288/article/details/111243361

    https://blog.csdn.net/weixin_42144294/article/details/111624608
    https://www.cnblogs.com/chenyameng/p/14273935.html

    https://blog.csdn.net/adong6561975/article/details/106548396/


  • 相关阅读:
    HDU 6071
    HDU 6073
    HDU 2124 Repair the Wall(贪心)
    HDU 2037 今年暑假不AC(贪心)
    HDU 1257 最少拦截系统(贪心)
    HDU 1789 Doing Homework again(贪心)
    HDU 1009 FatMouse' Trade(贪心)
    HDU 2216 Game III(BFS)
    HDU 1509 Windows Message Queue(队列)
    HDU 1081 To The Max(动态规划)
  • 原文地址:https://www.cnblogs.com/emanlee/p/14332287.html
Copyright © 2011-2022 走看看