首先,K-近邻算法(KNN)主要用于分类问题,是采用测量不同特征值之间的距离方法进行分类。
原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中k的出处,通常k是不大于20的整数。最后,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。
伪代码:
1、计算已知类别数据集中的点与当前点之间的距离;
2、按照距离递增次序排序;
3、选取与当前点距离最小的K个点;
4、确定前K个点所在类别的出现频率;
5、返回前K个点出现频率最高的类别作为当前点的预测分类。
优点:精度高,对异常值不敏感,无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
参考资料:
1、机器学习实战