zoukankan      html  css  js  c++  java
  • Java数据结构——树、二叉树的理论知识汇总

    通用树的理论知识


    一、树的定义

    由一个或多个(n>=0)节点组成的有限集合T,有且仅有一个节点称为根(root),当n>1时,其7余的节点为m(m>=0)个互不相交的有限集合T1,T2,...,Tm。每个集合本身又是棵树,称其为根的子树。
    注意:空树也是树,树具有递归性。

    二、树的相关术语
    1. 根:根节点(没有前驱)。
    2. 叶子:终端节点(没有后继)。
    3. 森林:m棵不相交树的集合。
    4. 有序树:节点从上至下、从左至右有有序,不能互换
    5. 双亲:节点的直接前驱。
    6. 孩子:节点的直接后继。
    7. 兄弟:同一双亲下的同层节点。
    8. 堂兄弟:不同双亲的同层节点。
    9. 祖先:从根节点到该节点所经分支的所有节点。
    10. 子孙:从该节点的下层子树的任一节点。
    11. 节点:树的数据元素。
    12. 节点的度:直接后继的个数。
    13. 节点的层次:从根到该节点的层数,根节点所在的层数为1。
    14. 终端节点:度数为0的节点,就是叶子。
    15. 分支节点:树根除外的节点。
    16. 树的度:所有节点度中的最大值。
    17. 树的深度:所有节点中最大的层数。

    三、树的表示法
    1. 广义表示法:(A(B(E(K,L),F),C(G),D(H(M),I,J)))
    2. 左孩子右兄弟表示法:每个节点有两个指针域,一个指向其长子,另一个指向其兄弟。
    3.双亲表示法:让每个结点记住其父结点的位置。存储数据元素的结点由两部分组成:存储数据元素值的数据字段,以及存储父结点位置的字段。

    四、树的物理存储结构

    顺序储存、链式存储。

    五、树的运算

    普通的树如果不能转化为二叉树,则运算很难实现。二叉树的运算有插入、删除、修改、查找、排序等,这些操作必须建立在对树节点遍历之上。

    六、普通树转二叉树(左儿子,右兄弟)

    1. 将树的根节点直接作为二叉树的根节点。
    2. 将树的根节点的第一个子节点作为根节点的左儿子,若该子节点存在兄弟节点,则将该子节点的第一个兄弟节点(方向从左往右)作为该子节点的右儿子。
    3. 将树中的剩余节点按照上一步的方式,依序添加到二叉树中,直到树中所有的节点都在二叉树中。

    其实就是每个点的左儿子是它的第一个儿子,右儿子是它从左往右数的第一个兄弟。

    二叉树的补充理论知识


    一、二叉树的定义

    n(n>=0)个节点的有限集合,由一个根节点以及两棵互不相交的左子树、右子树组成。

    二、二叉树逻辑结构

    一对二(1:2)

    三、二叉树基本特征

    每个节点最多只有两棵子树,不存在度大于2的节点,左子树和右子树次序不能颠倒。

    四、二叉树的五种基本形态
    (1)空二叉树;

    (2)只有一个根结点;

    (3)根结点只有左子树;

    (4)根结点只有右子树(完全二叉树不具备这种形态);

    (5)根结点既有左子树又有右子树。

    五、二叉树的性质
    1. 二叉树的第i层上至多有2的i-1次方个节点(i>0)。
    2. 深度为k的二叉树至多有2的k次方-1个节点(k>0)。
    3. 二叉树,n0 = n2 + 1(n0表示叶子数,n2表示度为2的节点数)
    4. 满二叉树:每层都充满了节点
    5. 完全二叉树:满二叉树中,编号1~n,满足至上而下、从左至右与节点一一对应。完全二叉树最后一层叶子可以不满,但必须集中在左边。
    6. 完全二叉树,具有n个节点的深度必为

    7. 完全二叉树,若编号为i的节点,其左孩子编号必为2i,其右孩子编号必为2i+1。
    8.满二叉树的特点:
    (1)叶子只能出现在最下一层。出现在其他层就不可能达到平衡。
    (2)非叶子结点的度一定是2。
    (3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子树最多。
    9.完全二叉树的特点:
    (1)叶子结点只能出现在最下两层。
    (2)最下层的叶子一定集中在左部连续位置
    (3)倒数二层,若有叶子结点,一定都在右部连续位置。
    (4)如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况。
    (5)同样结点数的二叉树,完全二叉树的深度最小。
    注意:满二叉树一定是棵完全二叉树,但完全二叉树不一定是满的。
    10.题目:深度为9的二叉树中至少有多少个节点,答:9个节点(注意:这里是二叉树而不是完全二叉树)
    11.为什么要研究满二叉树和完全二叉树这两种特殊形式,答:只有这两种形式可以实现顺序存储。
    12.完全二叉树,具有1000个节点,则叶子节点有多少个,度为2的节点有多少个,有多少个节点只有非空左子树,有多少个节点只有非空右子树。答:总层数:

    ,完全二叉树前9层总节点数为511个,末层叶子数为489个,叶子数为奇数说明有一个非空左子树,完全二叉树不可能出现只有右子树
    13.树执行查找、删除、插入的时间复杂度都是O(logN)

    五、二叉树的顺序存储

    按二叉树的节点“自上而下,从左至右”编号,用一组连续的存储单元存储。
    规律:下标为i的双亲,其左孩子下标必定为2i,其右孩子下标必定为2i+1,例如[2]、[4]、[5]
    若不是完全二叉树就转化为完全二叉树,方法简单,就是将各层空缺统统补上节点,内容为空,缺点:浪费空间,插入删除不方便。

    六、二叉树的链式存储结构

    用二叉链表即可方便表示,从根节点开始存储,相应的,访问树中的节点也只能从根节点开始。
    如果需要倒插某节点的双亲,可以再增加一个双亲域(直接前趋)指针,将二叉链表变成三叉链表。

    七、遍历二叉树
    1. 遍历又称周游。
    2. 遍历的用途:是树结构插入、删除、修改、查找、排序运算的前提。
    3. 遍历方法:先左后右

    八、遍历方案(下一篇博文会具体实现树的遍历)

    先(根)序遍历,中(根)序遍历、后(根)序遍历,层序遍历。

  • 相关阅读:
    (转)flash的Socket通讯沙箱和安全策略问题
    as3 页游中,新手指导中,屏蔽所有交互对象,但除了指定交互对象可用的方法【转http://blog.csdn.net/linjf520/article/details/9450945】
    位运算 (&|)与--或 一位数组表示多种意思~~ 与--或
    SQL语句
    stage.width/height和stage.stageWidth/stageHeight的区别
    解决Mac OS Adobe Flash Builder 4.7 java heap space 问题【转】
    一个loader加载多个swf
    加濾鏡效果GlowTween
    [AS3]as3用ByteArray来对SWF文件编码加密实例参考
    屏幕震动效果
  • 原文地址:https://www.cnblogs.com/ericz2j/p/10676735.html
Copyright © 2011-2022 走看看