zoukankan      html  css  js  c++  java
  • Boyer-Moore算法

    BM(Boyer-Moore)

    部分资料来自:https://blog.csdn.net/no_heart2019/article/details/96564763

    https://blog.csdn.net/qzp1991/article/details/42663969

    https://blog.csdn.net/v_JULY_v/article/details/6545192

    https://blog.csdn.net/qq_21201267/article/details/92799488

    BM算法被认为是亚线性串匹配算法,它在最坏情况下找到模式所有出现的时间复杂度为O(mn),在最好情况下执行匹配找到模式所有出现的时间复杂度为O(n/m)。

    尤其在空格较多的文本中,比KMP算法的实际效能高。

    BM算法从模式串的尾部开始匹配,即从后往前

    两个规则

    这是BM算法的核心,他有两种跳转方式,分别对应两种规则,而每次跳转多少取决于这两种跳转规则的最大值

    坏字符规则(文本中效率高的体现点)

    当文本串中的某个字符跟模式串的某个字符不匹配时,我们称文本串中的这个失配字符为坏字符,此时模式串需要向右移动

    移动的位数 = 坏字符在模式串中的位置 - 坏字符在模式串中最右出现的位置

    此外,如果"坏字符"不包含在模式串之中,则最右出现位置为-1。

    S失配,而模式串中S的出现在-1(即没有,w的下标为0)

    减去相对位置差S->6(当前坏字符位置), S'->-1(模式串位置), 6-(-1)==7

    所以我们后移7步,得到:

    如何理解?我们要让字符串匹配成功的必要条件是让这个坏字符要满足情况,所以你肯定优先找到模式串对应的字符与之匹配,让之先满足情况

    其次为了防止漏了正确答案,取的是最右位置

    如果是不存在,位置给-1,它就整串下移了

    这也就是为什么文本中效率比较高,文本空格多,让坏字符出现的可能性更大,频率更高,跳转性以及跳转幅度很可观

    进一步使用坏字符原则我们可以得到:

    好后缀规则

    好后缀,指的就是当前以及匹配上的子串

    先看图,下面的图很清晰的展现了好后缀规则,我们现在有好后缀bc

    通过上图,我们可以总结出来,此规则是:

    从好后缀中的所有后缀子串中,找一个最长的的后缀v,并且使得它在模式串中存在相同的子串v',v!=v',如图:

    而后移位数,与坏字符规则类似,当字符失配时,后移位数=v'的位置-v的位置

    注意他和kmp的next不同,思路有相似之处

    那么BM算法的核心来了,那么如何求好后缀中最长满足条件的子串嘞?

    请看下面预处理部分

    预处理

    坏字符

    坏字符,存每个字符出现在最右边的位置,后移步数可能算出来是负的,但是好规则取值一定是正的,取完max无影响

    好字符

    而好后缀的求解并不像KMP中next数组递推去求解,它求起来细节特别多

    首先是暴力求解如下内容,这里复杂度要看模式串情况

    for(int i=0;i<s.size()-1;i++)
    {
        int j=i,k=0;
        while(j>=0&&s[j]==s[s.size()-k-1])
        {
            j--,k++;
            suffix[k]=j+1;
        }
    }
    

    注意这里,当好后缀有多个可行的前缀位置,我们从前往后找会产生覆盖,从而我们取的是这些位置当中最右的

    很多情况下,好后缀不一定有对应前缀,但它的后缀子串有

    所以为了跳转方便,我们不妨进一步再处理一下,suffix为-1的好后缀它们所包含的最长可行子后缀的情况

    int curpos=-1;
    for(int i=1;i<=s.size();i++)
    {
        if(suffix[i]!=-1){curpos=index[i]=i;continue;}
        else
        {
            if(curpos!=-1)suffix[i]=suffix[curpos];
            index[i]=curpos;
        }
    }
    

    匹配

    取好规则与坏规则最大者

    注意一下suffix为-1的情况以及匹配成功该如何处理(详见代码)

    不足

    之前讲了最坏情况下找到模式所有出现的时间复杂度为O(mn),why?

    比如说,一个最拉跨例子aaaaaaa匹配aaaaaa...复杂度起飞,不仅预处理会拉垮,而且匹配时也会拉垮

    但是在正常文本匹配,如文章中找单词,BM效率优于KMP

    代码

    /*
        BM算法
        统计目标串中模式串的个数
    */
    #include<iostream>
    #include<cstring>
    #include<string>
    using namespace std;
    #define maxn 10005
    #define ll long long int
    int suffix[maxn],index[maxn],Map[256];
    void bad_char_deal(string s)//坏字符,建立哈希,映射位置是从左开始
    {
        memset(Map,-1,sizeof(Map));
        for(int i=0;i<s.size();i++)
            Map[(int)s[i]]=i;
    }
    void good_suffix_deal(string s)//好后缀
    {	
    	memset(suffix,-1,sizeof(suffix));
    	memset(index,-1,sizeof(index));
    	for(int i=0;i<s.size()-1;i++)//暴力处理
    	{
    	    int j=i,k=0;
    	    while(j>=0&&s[j]==s[s.size()-k-1])
    	    {
    	        j--,k++;
    	        suffix[k]=j+1;//记录当前好后缀对应的前子串位置
    	    }
    	}
    	int curpos=-1;
    	/*这里进行优化,如果好后缀无前对应的子串,
    	记录好后缀中最大的满足要求的后缀子串,方便后面的跳转
    	注意这里suffix下标指的是好后缀的长度
    	*/
    	for(int i=1;i<=s.size();i++)
    	{
    	    if(suffix[i]!=-1){curpos=index[i]=i;continue;}
    	    else
    	    {
    	        if(curpos!=-1)suffix[i]=suffix[curpos];
    	        index[i]=curpos;
    	    }
    	}
    }
    void prev_deal(string s)
    {
    	//预处理两部分,坏字符,好后缀
    	bad_char_deal(s);
    	good_suffix_deal(s);
    }
    int check(string s,string p)//s为目标串,p为模式串
    {
    int sum=0,len=p.size();
    int pos=len;//pos指的是当前目标串匹配区段末元素的下一位
    	while(pos<=s.size())
    	{
    		int suflen=0;//好后缀长度
      		while(s[pos-suflen-1]==p[len-suflen-1]&&(len-suflen))
      		{
      	    	//模式串与目标串匹配,每次匹配上,好后缀长度++
      	    	suflen++;
      	    }
            if(suflen==len)
            {
                sum++;//匹配成功,总数++,
                if(suffix[suflen]!=-1)pos+=len-suffix[suflen]-index[suflen];
                else pos+=len;//跳转
            }
            else
            {
                int x=len-suflen-1;//当前模式串中坏字符的位置
                int mapp=Map[(int)s[pos-suflen-1]];//查找当前目标串坏字符的映射位置,若无则为-1
                if(suffix[suflen]==-1)
                {
                    //特判
                    if(suflen)pos+=len;
                    else pos+=x-mapp;
                }
                else
                {
                    //两种移动规则中选较大的方案
                    pos+=max(x-mapp,len-suffix[suflen]-index[suflen]);
                }
            }
        }
        return sum;
    }
    int main()
    {
        string patt_str,targ_str;
        cin>>patt_str>>targ_str;
        prev_deal(patt_str);
        cout<<check(targ_str,patt_str)<<endl;
        return 0;
    }
  • 相关阅读:
    Android SDK Manager和AVD Manager使用
    Android Studio 学习之 Android SDK快速更新
    Windows10远程报错:由于CredSSP加密Oracle修正
    电商促销优惠规则业务分析建模
    关于分库分表最全的一篇文章
    根据自增ID生成不重复序列号
    【转】 Pro Android学习笔记(五八):Preferences(2):CheckBoxPreference
    【转】 Pro Android学习笔记(五七):Preferences(1):ListPreference
    【转】 Pro Android学习笔记(五六):配置变化
    【转】 Pro Android学习笔记(五五):调试和分析(3):adb命令、模拟器控制台和StrictMode
  • 原文地址:https://www.cnblogs.com/et3-tsy/p/12683792.html
Copyright © 2011-2022 走看看