zoukankan      html  css  js  c++  java
  • [USACO 2016Dec] Team Building

    [题目链接]

             https://www.lydsy.com/JudgeOnline/problem.php?id=4742

    [算法]

            动态规划

            用Fi,j,k表示约翰的前i头牛和保罗的前j头牛匹配 , 共选了k头 , 有多少种方案

            转移详见代码

           时间复杂度 : O(N ^ 2K)

    [代码]

           

    #include<bits/stdc++.h>
    using namespace std;
    #define MAXN 1010
    #define MAXT 12
    const int P = 1e9 + 9;
    
    int n , m , t;
    int a[MAXN] , b[MAXN];
    int dp[MAXN][MAXN][MAXT];
    
    template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
    template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
    template <typename T> inline void read(T &x)
    {
        T f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
        x *= f;
    }
    
    int main()
    {
            
            read(n); read(m); read(t);
            for (int i = 1; i <= n; i++) read(a[i]);
            for (int i = 1; i <= m; i++) read(b[i]);
            sort(a + 1 , a + n + 1);
            sort(b + 1 , b + m + 1);
            dp[0][0][0] = 1;
            for (int i = 0; i <= n; i++)
            {
                    for (int j = 0; j <= m; j++)
                    {
                            for (int k = 0; k <= t; k++)
                            {
                                    if (i + j == 0) continue;
                                    if (i == 0) dp[i][j][k] = dp[i][j - 1][k];
                                    else if (j == 0) dp[i][j][k] = dp[i - 1][j][k];
                                    else dp[i][j][k] = dp[i - 1][j][k] + dp[i][j - 1][k] - dp[i - 1][j - 1][k];
                                    dp[i][j][k] = (dp[i][j][k] % P + P) % P;
                                    if (k > 0 && a[i] > b[j]) dp[i][j][k] += dp[i - 1][j - 1][k - 1];
                                    dp[i][j][k] = (dp[i][j][k] % P + P) % P;
                            }
                    }
            }
            printf("%d
    " , dp[n][m][t]);
            
            return 0;
        
    }
  • 相关阅读:
    在 Cocos2d-x 中添加自己的微博链接
    关于屏幕适配
    [抽象工厂模式]在游戏开发中的应用
    字符串排列组合
    子矩阵最大和
    网易游戏编程题第二题
    动态规划,最大子段和
    C++的四种显示类型转换
    多线程编程
    预处理等等
  • 原文地址:https://www.cnblogs.com/evenbao/p/9906302.html
Copyright © 2011-2022 走看看