zoukankan      html  css  js  c++  java
  • 非极大值抑制(NMS)

    非极大值抑制顾名思义就是抑制不是极大值的元素,搜索局部的极大值。这个局部代表的是一个邻域,邻域有两个参数可变,一个是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法,而是用于在目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高,并且抑制那些分数低的窗口。

    # import the necessary packages  
    import numpy as np  
       
    # Malisiewicz et al.  
    def non_max_suppression_fast(boxes, overlapThresh):  
        # if there are no boxes, return an empty list  
        if len(boxes) == 0:  
            return []  
       
        # if the bounding boxes integers, convert them to floats --  
        # this is important since we'll be doing a bunch of divisions  
        if boxes.dtype.kind == "i":  
            boxes = boxes.astype("float")  
       
        # initialize the list of picked indexes   
        pick = []  
       
        # grab the coordinates of the bounding boxes  
        x1 = boxes[:,0]  
        y1 = boxes[:,1]  
        x2 = boxes[:,2]  
        y2 = boxes[:,3]  
       
        # compute the area of the bounding boxes and sort the bounding  
        # boxes by the bottom-right y-coordinate of the bounding box  
        area = (x2 - x1 + 1) * (y2 - y1 + 1)  
        idxs = np.argsort(y2)  
       
        # keep looping while some indexes still remain in the indexes  
        # list  
        while len(idxs) > 0:  
            # grab the last index in the indexes list and add the  
            # index value to the list of picked indexes  
            last = len(idxs) - 1  
            i = idxs[last]  
            pick.append(i)  
       
            # find the largest (x, y) coordinates for the start of  
            # the bounding box and the smallest (x, y) coordinates  
            # for the end of the bounding box  
            xx1 = np.maximum(x1[i], x1[idxs[:last]])  
            yy1 = np.maximum(y1[i], y1[idxs[:last]])  
            xx2 = np.minimum(x2[i], x2[idxs[:last]])  
            yy2 = np.minimum(y2[i], y2[idxs[:last]])  
       
            # compute the width and height of the bounding box  
            w = np.maximum(0, xx2 - xx1 + 1)  
            h = np.maximum(0, yy2 - yy1 + 1)  
       
            # compute the ratio of overlap  
            overlap = (w * h) / area[idxs[:last]]  
       
            # delete all indexes from the index list that have  
            idxs = np.delete(idxs, np.concatenate(([last],  
                np.where(overlap > overlapThresh)[0])))  
       
        # return only the bounding boxes that were picked using the  
        # integer data type  
        return boxes[pick].astype("int")
  • 相关阅读:
    Java中如何实现序列化,有什么意义?
    java中this和super关键字的作用
    java中String类的面试题大全含答案
    java中static关键字的作用
    final和abstract关键字的作用
    Java.util.Map的实现类有那些?
    java.sql.Date和java.util.Date的联系和区别
    Java 的信号灯
    java.lang.ThreadLocal的作用和原理?列举在哪些程序中见过ThreadLocal的使用?
    HashMap是不是有序的?
  • 原文地址:https://www.cnblogs.com/fangpengchengbupter/p/8283385.html
Copyright © 2011-2022 走看看