zoukankan      html  css  js  c++  java
  • 求整数幂问题

    1、问题与分析

    问题:

    • 如何使用较少的乘法次数求 (x^{27})
    • 方法:缓存中间结果,避免重复计算

    过程演示:

    [x^3 = x * x * x, x^9 = x^3 * x^3 * x^3, x^{27} = x^9 * x^9 * x^9 ]

    [x^2 = x * x, x^4 = x^2 * x^ 2, x^8 = x^4 * x^4, x^{16} = x^8 * x^8, x^{27} = x^{16} * x^8 * x^2 * x ]

    上面的方法利用的其实就是分治思想:

    • 问题的规模是n,把n分解
    • 如果n是偶数,(n = 2 * displaystylefrac{n}{2});否则 (n = 2 * displaystylefrac{n}{2} + 1)
    • 因此,(x^0 = 1)

    [x^n = egin{cases} (displaystyle{x^2})^{frac{n}{2}} quad n is not even \ (displaystyle{x^2})^{frac{n}{2}} * x quad otherwise end{cases} ]

    • 最坏情况下,n始终为奇数

    2、代码求解

    2.1、递归代码

    2.2.1、代码

    int power(int x, int n)
    {
        if (0 == n)
            return 1;
        if (0 == n % 2)
            return power(x * x, n / 2);
    
        return power(x * x, n / 2) * x;
    }
    

    2.1.2、复杂度分析

    • 时间复杂度:(O(logn)),即为递归的层数
    • 空间复杂度:(O(logn)),即为递归的层数。这是由于递归的函数调用会使用栈空间

    2.2、改写递归为迭代

    2.2.1、代码

    int power(int x, int n)
    {
        int res = 1;
    
        if (0 == n)
            return 1;
    
        for (; n > 0; n = n >> 1)
        {
            if (1 == n % 2)
                res *= x;
            x *= x;
        }
        return res;
    }
    

    2.2.2、分析与理解

    这个算法该如何理解,我们可以借助LeetCode的官方题解(https://leetcode-cn.com/problems/powx-n/solution/powx-n-by-leetcode-solution/)来分析:

    20201003161328

    我想了很长时间,令我困惑的点是在每一次迭代时,n为奇数和n为偶数的情况为什么会是这样处理,现在借助这个题解,我们理解起来会容易很多。

    我们把一开始的x给剥离出来,它到最后一次迭代时,它的幂一定是不超过n的最大的2的整数次幂,比如,n为77时,那么x最后的幂就是64,n为60时,x最后的幂就是32;我们可以列一个式子:

    [① x ightarrow x^2 ightarrow x^4 ightarrow^{+} x^9 ightarrow^{+} x^{19} ightarrow x^{38} ightarrow^{+} x^{77} ]

    [② x ightarrow x^2 ightarrow x^4 ightarrow x^8 ightarrow x^{16} ightarrow x^{32} ightarrow x^{64} ]

    我们迭代的顺序是从后往前,所以x的值的变化是这样的:

    [③ x^{64} ightarrow x^{32} ightarrow x^{16} ightarrow x^8 ightarrow x^{4} ightarrow x^{2} ightarrow x ]

    这里解释一下 (x^{9} ightarrow^{+} x^{19}) 中额外乘的 x 在之后被平方了两次,因此在 (x^{77}) 中贡献了 (x^{2^2} = x^4),我们知道,我们的 x 只保存了 x 的2的乘幂次方(即②式中的各个数),而遇到奇数时,多出来的一个 x 所贡献的次数就保存在了res中,我想,大家所疑惑的就是为什么就要恰好保存迭代到那一次时的 x,我们用式子来解释一下:

    我们把 (x^9) 中多出来的一个 x 给拆解出来,那么:

    [x^{8 + 1} ightarrow x^{16 + 2} ightarrow x^{32 + 4} ightarrow x^{64 + 8} ]

    即,在 (x^{77}) 中贡献了 (x^{2^3} = 8) 。类似地,我们把奇数次的迭代时的需要贡献的值保存在 res 中,最后再与最后的 x 的值合并,就得到最后的结果了。

    2.2.3、复杂度分析

    • 循环次数为 (logn)
    • 最好情况下的乘法次数为 (logn) 次:n%2 始终为0
    • 最坏情况下的乘法次数为 (2logn) 次:n%2始终为1
    • 算法时间复杂度为 (O(logn))
    • 算法空间复杂度为 (O(1))

    3、其他分解方式(扩展)

    3.1、分解方式

    • 问题的规模是n,仍然按照n分解
    • 如果n是偶数,(n = displaystylefrac{n}{2} + displaystylefrac{n}{2});否则,(n = displaystylefrac{n}{2} + displaystylefrac{n}{2} + 1)
    • 因此,(x^0 = 1)

    [x^n = egin{cases} displaystyle{x^{frac{n}{2}}} * displaystyle{x^{frac{n}{2}}} quad n is not even \ displaystyle{x^{frac{n}{2}}} * displaystyle{x^{frac{n}{2}}} * x quad otherwise end{cases} ]

    • 最坏情况,还是n始终为奇数的情况

    3.2、递归代码

    3.2.1、代码

    int power(int x, int n)
    {
        if (0 == n)
            return 1;
        
        if (0 == n % 2)
            return power(x, n / 2) * power(x, n / 2);
        
        return power(x, n / 2) * power(x, n / 2) * n;
    }
    

    3.2.2、复杂度分析

    • 显然,复杂度为 (O(n)),这是很坏的算法

    3.2.3、解决办法

    代码

    int power(int x, int n)
    {
        int tmp;
    
        if (0 == n)
            return 1;
        
        tmp = power(x, n / 2);
        if (0 == n % 2)
            return tmp * tmp;
    
        return tmp * tmp * x;
    }
    
    • 显然,易知:(T(N) = T(frac{N}{2}) + O(1))
    • 故时间复杂度为:(O(N))

    下面是在stackexange网站找到的复杂度证明:

    20201003173646

    4、以3为底(扩展)

    20201003174335

    递归代码

    int power(int x, int n)
    {
        if (n == 0)
            return 1;
        if (n == 1)
            return x;
        if (n == 2)
            return x * x;
        
        if (n % 3 == 0)
            return power(x * x * x, n / 3);
        if (n % 3 == 1)
            return power(x * x * x, n / 3) * x;
        
        return power(x * x * x, n / 3) * x * x;
    }
    

    时间复杂度分析:

    • (T(N) = logN)

    迭代代码

    int power(int x, int n)
    {
        int res = 1;
        if (n == 0)
            return 1;
        
        for (; n > 0; n /=3, x = x*x*x)
        {
            if (n % 3 == 1) res *= x;
            if (n % 3 == 2) res *= x*x;
        }
        
        return res;
    }
    

    时间复杂度分析:

    • (T(N) = T(N / 3) + 4, T(0) = 0)
  • 相关阅读:
    再谈多线程编程(一)——线程的概念、多线程的创建、守护线程、线程状态的转化
    java创建线程的三种方式及其对比
    再谈Spring AOP
    初始化一个static的Map变量
    Spring AOP详解
    git命令汇总
    AngularJS如何修改URL中的参数
    VirtualBox安装Ubuntu搭建js环境的注意事项
    Sql server日期函数操作
    凤凰网股票接口
  • 原文地址:https://www.cnblogs.com/fanlumaster/p/13764947.html
Copyright © 2011-2022 走看看