zoukankan      html  css  js  c++  java
  • poj A Round Peg in a Ground Hole

    http://poj.org/problem?id=1584

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<cmath>
      4 #include<algorithm>
      5 using namespace std;
      6 
      7 const int maxn=50000;
      8 const double pi=acos(-1.0);
      9 const double eps=10e-8;
     10 
     11 int cmp(double x)
     12 {
     13    if(fabs(x)<eps) return 0;
     14    if(x>0) return 1;
     15    return -1;
     16 }
     17 
     18 double sqr(double x)
     19 {
     20     return x*x;
     21 }
     22 
     23 struct point
     24 {
     25     double x,y;
     26     point(){}
     27     point(double a,double b):x(a),y(b){}
     28     bool operator <(const point &a)const
     29     {
     30         return (x<a.x)||(x==a.x&&y<a.y);
     31     }
     32     friend point operator -(const point &a,const point &b){
     33         return point(a.x-b.x,a.y-b.y);
     34     }
     35     double norm(){
     36         return sqrt(sqr(x)+sqr(y));
     37     }
     38 }p[maxn],ch[maxn];
     39 
     40 struct line
     41 {
     42    point a,b;
     43    line(){}
     44    line(point x,point y):a(x),b(y){}
     45 };
     46 
     47 double det(point a,point b,point c)
     48 {
     49     return ((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
     50 }
     51 
     52 double cross(point a,point b,point c)
     53 {
     54     return ((b.x-a.x)*(c.y-b.y)-(c.x-b.x)*(b.y-a.y));
     55 }
     56 double det1(const point &a,const point &b)
     57 {
     58     return a.x*b.y-a.y*b.x;
     59 }
     60 
     61 double dot(const point &a,const point &b)
     62 {
     63     return a.x*b.x+a.y*b.y;
     64 }
     65 
     66 double dis(point a,point b)
     67 {
     68     return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
     69 }
     70 
     71 double dis_point_segment(const point p,const point s,const point t)
     72 {
     73     if(cmp(dot(p-s,t-s))<0) return (p-s).norm();
     74     if(cmp(dot(p-t,s-t))<0) return (p-t).norm();
     75     return fabs(det1(s-p,t-p)/dis(s,t));
     76 }
     77 
     78 bool pointonsegment(point p,point s,point t)
     79 {
     80     return cmp(det1(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
     81 }
     82 
     83 int convex_hull(point *p,int n,point *ch)
     84 {
     85     sort(p,p+n);
     86     int m=0;
     87     for(int i=0; i<n; i++)
     88     {
     89         while(m>1&&det(ch[m-2],ch[m-1],p[i])<=0) m--;
     90         ch[m++]=p[i];
     91     }
     92     int k=m;
     93     for(int i=n-2; i>=0; i--)
     94     {
     95         while(m>k&&det(ch[m-2],ch[m-1],p[i])<=0) m--;
     96         ch[m++]=p[i];
     97     }
     98     if(n>1) m--;
     99     return m;
    100 }
    101 
    102 
    103 bool convex_hull1(point *p,int n)
    104 {
    105     int flag=0;
    106     p[n]=p[0];
    107     for(int i=2; i<=n; i++)
    108     {
    109         //printf("%lf%lf %lf%lf %lf%lf
    ",p[i-2].x,p[i-2].y,p[i-1].x,p[i-1].y,p[i].x,p[i].y);
    110         int t=cmp(cross(p[i-2],p[i-1],p[i]));
    111         //printf("%d
    ",t);
    112         if(!flag) flag=t;
    113         if(flag*t<0) return false;
    114     }
    115     return true;
    116 }
    117 int point_in(point t,point *ch,int n)
    118 {
    119     int num=0,d1,d2,k;
    120     ch[n]=ch[0];
    121     for(int i=0; i<n; i++)
    122     {
    123         if(pointonsegment(t,ch[i],ch[i+1])) return 2;
    124         k=cmp(det1(ch[i+1]-ch[i],t-ch[i]));
    125         d1=cmp(ch[i].y-t.y);
    126         d2=cmp(ch[i+1].y-t.y);
    127         if(k>0&&d1<=0&&d2>0) num++;
    128         if(k<0&&d2<=0&&d1>0) num--;
    129     }
    130     return num!=0;
    131 }
    132 int main()
    133 {
    134     int n;
    135     double r,x,y;
    136     //freopen("sb.txt","w",stdout);
    137     while(scanf("%d",&n)!=EOF)
    138     {
    139         if(n<3) break;
    140         scanf("%lf%lf%lf",&r,&x,&y);
    141         point t(x,y);
    142         for(int i=0; i<n; i++)
    143         {
    144             scanf("%lf%lf",&p[i].x,&p[i].y);
    145         }
    146 
    147         if(!convex_hull1(p,n))
    148         {
    149             printf("HOLE IS ILL-FORMED
    ");
    150             continue;
    151         }
    152         int cn=convex_hull(p,n,ch);
    153         if(point_in(t,ch,cn))
    154         {
    155             double max1=dis_point_segment(t,ch[0],ch[1]);
    156             for(int i=1; i<cn+1; i++)
    157             {
    158                 max1=min(max1,dis_point_segment(t,ch[i-1],ch[i]));
    159             }
    160             if(max1-r>=0) printf("PEG WILL FIT
    ");
    161             else printf("PEG WILL NOT FIT
    ");
    162         }
    163         else printf("PEG WILL NOT FIT
    ");
    164     }
    165     return 0;
    166 }
    View Code
  • 相关阅读:
    《区块链100问》第38集:比特币钱包是干嘛的?
    《区块链100问》第39集:冷钱包热钱包
    《区块链100问》第40集:全节点钱包和轻钱包
    《区块链100问》第41集:比特币可以用于支付吗?
    《区块链100问》第42集:区块链和比特币的关系
    《区块链100问》第43集:区块链技术发展史
    KindEditor使用
    Django之验证码
    Django之ModelForm
    Django之Form详解
  • 原文地址:https://www.cnblogs.com/fanminghui/p/3398479.html
Copyright © 2011-2022 走看看