zoukankan      html  css  js  c++  java
  • tcpdump

    总览 (SYNOPSIS)

    tcpdump [ -adeflnNOpqStvx ] [ -c count ] [ -F file ]

             [ -i interface ] [ -r file ] [ -s snaplen ]

             [ -T type ] [ -w file ] [ expression ]

    描述 (DESCRIPTION)

    Tcpdump 打印出 在某个 网络界面 上, 匹配 布尔表达式 expression 的报文 的 报头.

    对于 SunOS 的 nit 或 bpf 界面: 要 运行 tcpdump , 你 必须 有 /dev/nit/dev/bpf* 的 读访问 权限.

    对于 Solaris 的 dlpi: 你 必须 有 网络仿真设备 (network pseudo device), 如 /dev/le 的 读访问 权限.

    对于 HP-UX 的 dlpi: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.

    对于 IRIX 的 snoop: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.

    对于 Linux: 你 必须 是 root, 或者 把它 安装成 root 的 设置uid 程序.

    对于 Ultrix 和 Digital UNIX: 一旦 超级用户 使用 pfconfig(8) 开放了 promiscuous 操作模式 (promiscuous-mode), 任何用户 都可以 运行 tcpdump.

    对于 BSD: 你 必须 有 /dev/bpf* 的 读访问 权限.

    选项 (OPTIONS)

    -a
    试着 把 网络和广播地址 转换成 名称.
    -c
    当 收到 count 报文 后 退出.
    -d
    把 编译好的 报文匹配代码 (packet-matching code) 翻译成 可读形式, 传往 标准输出, 然后退出.
    -dd
    把 报文匹配代码 (packet-matching code) 以 C 程序片断 的 形式 输出.
    -ddd
    把 报文匹配代码 (packet-matching code) 以 十进制数 形式 输出 (前面 加上 总数).
    -e
    显示 链路层报头.
    -f
    以 数字形式 显示 '外部的' 互联网地址, 而不是 字符形式 (这个 选项 用来绕开 脑壳坏光的 SUN 黄页服务器 的 问题 --- 一般说来 当它 翻译 外部网络的 数字地址 时 会长期挂起).
    -F
    file 的内容 用作 过滤表达式. 忽略 命令行 上 的 表达式.
    -i
    监听 interface. 如果 不指定 接口, tcpdump 在 系统 的 接口 清单 中, 寻找 号码最小, 已经 配置好的 接口 (loopback 除外). 选中的时候 会 中断 连接.
    -l
    行缓冲 标准输出. 可用于 捕捉 数据 的 同时 查看 数据. 例如,
    ``tcpdump  -l  |  tee dat'' or ``tcpdump  -l   > dat  &  tail  -f  dat''.
    -n
    不要把 地址 转换成 名字 (指的是 主机地址, 端口号等)
    -N
    不显示 主机名字 中的 域名 部分. 例如, 如果 使用 这个 选项, tcpdump 只显示 ``nic'', 而不是 ``nic.ddn.mil''.
    -O
    禁止运行 报文匹配代码 的 优化器. 这个选项 只有 当你 怀疑 优化器 有 bug 时 才有用.
    -p
    禁止 把 接口 置成 promiscuous(杂凑) 模式. 注意, 接口 有可能 因 其他原因而 处于 promiscuous 模式; 因此, '-p' 不能 作为 `ether host {local-hw-addr} 或 ether broadcast' 的 简写.
    -q
    快速输出. 显示 较少的 协议信息, 输出行 会 短一点点.
    -r
    file 中 读入 数据报 (文件 是用 -w 选项 创建的). 如果 file 是 ``-'', 就从 标准输入 读入.
    -s
    从每个 报文 中 截取 snaplen 字节的数据, 而不是 缺省的 68 (如果是 SunOS 的 NIT, 最小值是 96). 68 个字节 适用于 IP, ICMP, TCP 和 UDP, 但是 有可能 截掉 名字服务器 和 NFS 报文 的 协议 信息 (见下文). 输出时 如果指定 ``[|proto]'', tcpdump 可以 指出 那些 捕捉量过小的 数据报, 这里的 proto 是 截断发生处 的 协议层 名称. 注意, 采用 更大的 捕捉范围 不但 增加了 处理 报文 的 时间, 而且 减少了报文的 缓冲 数量, 可能 导致 报文的丢失. 你 应该 把 snaplen 设的尽量小, 只要 能够 容纳 你 需要 的 协议信息 就可以了.
    -T
    把 通过 "expression" 挑选出来的 报文 解释成 指定的 type. 目前 已知 的 类型 有: rpc (远程过程调用 Remote Procedure Call), rtp (实时应用协议 Real-Time Applications protocol), rtcp (实时应用控制协议 Real-Time Applications control protocol), vat (可视音频工具 Visual Audio Tool), 和 wb (分布式白板 distributed White Board).
    -S
    显示 绝对的, 而不是 相对的 TCP 流序号.
    -t
    禁止 显示 时戳标志.
    -tt
    显示 未格式化的 时戳标志.
    -v
    (稍微多一点) 繁琐的输出. 例如, 显示 IP 数据报 中的 生存周期 和 服务类型.
    -vv
    更繁琐的输出. 例如, 显示 NFS 应答报文 的 附加域.
    -w
    把 原始报文 存进 file, 不做 分析 和 显示. 它们 可以 以后 用 -r 选项 显示. 如果 file 是 ``-'', 就 写往 标准输出.
    -x
    以 16 进制数 形式 显示 每一个 报文 (去掉链路层报头后) . 可以 显示 较小的 完整 报文, 否则 只 显示 snaplen 个 字节 .
    expression
    用来 选择 要 转储 的 数据报. 如果 没有 指定 expression , 就 转储 网络的 全部 报文. 否则, 只转储 相对 expression 为 `true' 的 数据报.

    expression 由 一个或多个 原语 (primitive) 组成. 原语 通常 由 一个 标识 (id, 名称或数字), 和 标识 前面的 一个或多个 修饰子(qualifier) 组成. 修饰子 有 三种 不同的类型:

    type
    类型修饰子 指出 标识名称 或 标识数字 代表 什么 类型的东西. 可以使用的 类型 有 host, netport. 例如, `host foo', `net 128.3', `port 20'. 如果 不指定 类型修饰子, 就使用 缺省的 host .
    dir
    方向修饰子 指出 相对于 标识 的 传输方向 (数据是 传入还是传出 标识). 可以使用的 方向 有 src, dst, src or dstsrc and dst. 例如, `src foo', `dst net 128.3', `src or dst port ftp-data'. 如果 不指定 方向修饰子, 就使用 缺省的 src or dst . 对于 `null' 链路层 (就是说 象 slip 之类的 点到点 协议), 用 inboundoutbound 修饰子 指定 所需的 传输方向.
    proto
    协议修饰子 要求 匹配 指定的协议. 可以使用的 协议 有: ether, fddi, ip, arp, rarp, decnet, lat, sca, moprc, mopdl, tcpudp. 例如, `ether src foo', `arp net 128.3', `tcp port 21'. 如果 不指定协议修饰子, 就使用 所有 符合 类型 的 协议. 例如, `src foo' 指 `(ip 或 arp 或 rarp) src foo' (注意后者不符合语法), `net bar' 指 `(ip 或 arp 或 rarp) net bar', `port 53' 指 `(tcp 或 udp) port 53'.

    [`fddi' 实际上 是 `ether' 的 别名; 分析器 把 它们 视为 ``用在 指定 网络接口 上的 数据链路层.'' FDDI 报头 包含 类似于 以太协议的 源目地址, 而且 通常 包含 类似于 以太协议 的 报文类型, 因此 你 可以过滤 FDDI 域, 就象 分析 以太协议 一样. FDDI 报头 也 包含 其他 域, 但是你 不能 在 过滤器 表达式 里 显式描述.]

    作为 上述 的 补充, 有一些 特殊的 `原语' 关键字: gateway, broadcast, less, greater 和 数学表达式. 它们 不同于 上面的模式, 这些 在 后面 有 叙述.

    更复杂的 过滤器表达式 可以 通过 and, ornot 连接 原语 来 组建. 例如, `host foo and not port ftp and not port ftp-data'. 为了少敲点键, 可以忽略 相同的 修饰子. 例如, `tcp dst port ftp or ftp-data or domain' 实际上 就是 `tcp dst port ftp or tcp dst port ftp-data or tcp dst port domain'.

    允许的 原语 有:

    dst host host
    如果 报文中 IP 的 目的地址域 是 host, 则 逻辑 为 真. host 既可以 是 地址, 也可以 是 主机名.
    src host host
    如果 报文中 IP 的 源地址域 是 host, 则 逻辑 为 真.
    host host
    如果 报文中 IP 的 源地址域 或者 目的地址域 是 host, 则 逻辑 为 真. 上面 所有的 host 表达式 都可以 加上 ip, arp, 或 rarp 关键字 做 前缀, 就象:
    ip host host
    
    它等价于:
    ether proto ip and host host
    
    如果 host 是 拥有 多个 IP 地址 的 主机名, 它的 每个地址 都会 被查验.
    ether dst ehost
    如果 报文的 以太目的地址 是 ehost, 则 逻辑 为 真. Ehost 既可以是 名字 (/etc/ethers 里有), 也可以是 数字 (有关 数字格式 另见 ethers(3N) ).
    ether src ehost
    如果 报文的 以太源地址 是 ehost, 则 逻辑 为 真.
    ether host ehost
    如果 报文的 以太源地址 或 以太目的地址 是 ehost, 则 逻辑 为 真.
    gateway host
    如果 报文 把 host 当做 网关, 则 逻辑 为 真. 也就是说, 报文的以太源或目的地址 是 host, 但是 IP 的 源目地址 都不是 host. host 必须 是个 主机名, 而且 必须 存在 /etc/hosts 和 /etc/ethers 中. (一个等价的表达式是
    ether host ehost and not host host
    
    对于 host / ehost, 它既可以是 名字, 也可以是 数字.)
    dst net net
    如果 报文的 IP 目的地址 属于 网络号 net, 则 逻辑 为 真. net 既可以 是 名字 (存在 /etc/networks 中), 也可以是 网络号. (详见 networks(4)).
    src net net
    如果 报文的 IP 源地址 属于 网络号 net, 则 逻辑 为 真.
    net net
    如果 报文的 IP 源地址 或 目的地址 属于 网络号 net, 则 逻辑 为 真.
    net net mask mask
    如果 IP 地址 匹配 指定 网络掩码(netmask) 的 net, 则 逻辑 为 真. 本原语 可以用 srcdst 修饰.
    net net/len
    如果 IP 地址 匹配 指定 网络掩码 的 net, 则 逻辑 为 真, 掩码 的 有效位宽 为 len. 本原语 可以用 srcdst 修饰.
    dst port port
    如果 报文 是 ip/tcp 或 ip/udp, 并且 目的端口 是 port, 则 逻辑 为 真. port 是一个 数字, 也可以是 /etc/services 中 说明过的 名字 (参看 tcp(4P) 和 udp(4P)). 如果 使用 名字, 则 检查 端口号 和 协议. 如果 使用 数字, 或者 有二义的名字, 则 只检查 端口号 (例如, dst port 513 将显示 tcp/login 的数据 和 udp/who 的数据, 而 port domain 将显示 tcp/domain 和 udp/domain 的数据).
    src port port
    如果 报文 的 源端口号 是 port, 则 逻辑 为 真.
    port port
    如果 报文 的 源端口 或 目的端口 是 port, 则 逻辑 为 真. 上述的 任意一个 端口表达式 都可以 用 关键字 tcpudp 做 前缀, 就象:
    tcp src port port
    
    它 只匹配 源端口 是 port 的 TCP 报文.
    less length
    如果 报文 的 长度 小于等于 length, 则 逻辑 为 真. 它等同于:
    len <= length.
    
    greater length
    如果 报文 的 长度 大于等于 length, 则 逻辑 为 真. 它等同于:
    len >= length.
    
    ip proto protocol
    如果 报文 是 IP 数据报(参见 ip(4P)), 其 内容 的 协议类型 是 protocol, 则 逻辑 为 真. Protocol 可以是 数字, 也可以是 下列 名称 中的 一个: icmp, igrp, udp, nd, 或 tcp. 注意 这些 标识符 tcp, udp, 和 icmp 也是 关键字, 所以 必须 用 反斜杠() 转义, 在 C-shell 中 应该是 \ .
    ether broadcast
    如果 报文 是 以太广播报文, 则 逻辑 为 真. 关键字 ether 是 可选的.
    ip broadcast
    如果 报文 是 IP广播报文, 则 逻辑 为 真. Tcpdump 检查 全0 和 全1 广播约定, 并且 检查 本地 的 子网掩码.
    ether multicast
    如果 报文 是 以太多目传送报文(multicast), 则 逻辑 为 真. 关键字 ether 是 可选的. 这实际上 是 `ether[0] & 1 != 0' 的简写.
    ip multicast
    如果 报文 是 IP多目传送报文, 则 逻辑 为 真.
    ether proto protocol
    如果 报文协议 属于 以太类型 的 protocol, 则 逻辑 为 真. Protocol 可以是 数字, 也可以是 名字, 如 ip, arp, 或 rarp. 注意 这些 标识符 也是 关键字, 所以 必须 用 反斜杠() 转义. [如果是 FDDI (例如, `fddi protocol arp'), 协议 标识 来自 802.2 逻辑链路控制(LLC)报头, 它 通常 位于 FDDI 报头 的 顶层. 当 根据 协议标识过滤 报文 时, Tcpdump 假设 所有的 FDDI 报文 含有 LLC 报头, 而且 LLC 报头 用的是 SNAP 格式.]
    decnet src host
    如果 DECNET 的 源地址 是 host, 则 逻辑 为 真, 该 主机地址 的 形式 可能 是 ``10.123'', 或者是 DECNET 主机名. [只有 配置成 运行 DECNET 的 Ultrix 系统 支持 DECNET 主机名.]
    decnet dst host
    如果 DECNET 的 目的地址 是 host, 则 逻辑 为 真.
    decnet host host
    如果 DECNET 的 源地址 或 目的地址 是 host, 则 逻辑 为 真.
    ip, arp, rarp, decnet
    是:
    ether proto p
    
    的 简写 形式, 其中 p 为 上述 协议 的 一种.
    lat, moprc, mopdl
    是:
    ether proto p
    
    的 简写 形式, 其中 p 为 上述 协议 的 一种. 注意 tcpdump 目前 不知道 如何 分析 这些 协议.
    tcp, udp, icmp
    是:
    ip proto p
    
    的 简写 形式, 其中 p 为 上述 协议 的 一种.
    expr relop expr
    如果 这个 关系式 成立, 则 逻辑 为 真, 其中 relop 是 >, <, >=, <=, =, != 之一, expr 是 数学表达式, 由 常整数(标准C语法形式), 普通的 二进制运算符 [+, -, *, /, &, |], 一个 长度运算符, 和 指定的 报文数据访问算符 组成. 要 访问 报文内 的 数据, 使用 下面的 语法:
    proto [ expr : size ]
    
    Protoether, fddi, ip, arp, rarp, tcp, udp, or icmp 之一, 同时 也指出了 下标 操作 的协议层. expr 给出 字节单位 的 偏移量, 该 偏移量 相对于 指定的 协议层. Size 是 可选项, 指出 感兴趣的 字节数; 它可以 是 1, 2, 4, 缺省为 1 字节. 由 关键字 len 给出的 长度运算符 指明 报文 的 长度.

    例如, `ether[0] & 1 != 0' 捕捉 所有的 多目传送 报文. 表达式 `ip[0] & 0xf != 5' 捕捉 所有 带 可选域 的 IP 报文. 表达式 `ip[6:2] & 0x1fff = 0' 只捕捉 未分片 和 片偏移为0 的 数据报. 这种 检查 隐含在 tcpudp 下标操作 中. 例如, tcp[0] 一定是 TCP 报头 的 第一个 字节, 而不是 其中 某个 IP片 的 第一个 字节.

    原语 可以 用 下述 方法 结合使用:

    园括弧 括起来的 原语 和 操作符 (园括弧 在 Shell 中 有专用, 所以必须转义).
    取反操作 (`!' or `not').
    连结操作 (`&&' or `and').
    或操作 (`||' or `or').

    取反操作 有 最高优先级. 或操作 和 连结操作 有 相同的 优先级, 运算时 从左到右 结合. 注意 连结操作 需要 显式的 and 算符, 而不是 并列放置.

    如果 给出 标识符, 但没给 关键字, 那么 暗指 最近使用 的 关键字. 例如,

    not host vs and ace
    
    作为
    not host vs and host ace
    
    的 简写形式, 不应该 和
    not ( host vs or ace )
    
    混淆.

    表达式参数 可以 作为 单个 参数, 也可以 作为 复合参数 传给 tcpdump, 后者 更方便 一些. 一般说来, 如果 表达式 包含 Shell 元字符(metacharacter), 传递 单个 括起来的 参数 要 容易 一些. 复合参数 在 被解析前 用 空格 联接 一起.

    示例 (EXAMPLES)

    显示 所有 进出 sundown 的 报文:

    tcpdump host sundown
    

    显示 helios 和 主机 hot, ace 之间 的 报文 传送:

    tcpdump host helios and ( hot or ace )
    

    显示 ace 和 除了 helios 以外的 所有 主机 的 IP报文:

    tcpdump ip host ace and not helios
    

    显示 本地的主机 和 Berkeley的主机 之间 的 网络数据:

    tcpdump net ucb-ether
    

    显示 所有 通过 网关 snup 的 ftp 报文 (注意 这个 表达式 被 单引号 括起, 防止 shell 解释 园括弧):

    tcpdump 'gateway snup and (port ftp or ftp-data)'
    

    显示 既不是 来自 本地主机, 也不是 传往 本地主机 的 网络数据 (如果 报文 通过 网关 进入 其他网络, 那么 它 绝不可能 到达 你的 本地网络).

    tcpdump ip and not net localnet
    

    显示 每个 TCP会话 的 起始 和 结束 报文 (SYN 和 FIN 报文), 而且 会话方 中有一个 远程主机.

    tcpdump 'tcp[13] & 3 != 0 and not src and dst net localnet'
    

    显示 经过 网关 snup 中 大于 576 字节的 IP 数据报:

    tcpdump 'gateway snup and ip[2:2] > 576'
    

    显示 IP 广播 或 多目传送 的 数据报, 但这些 报文 不是 通过 以太广播 或 以太多目传送 形式 传送的:

    tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'
    

    显示 所有 不是 回响请求/应答 的 ICMP 报文 (也就是说, 不是 ping 报文):

    tcpdump 'icmp[0] != 8 and icmp[0] != 0"
    

    输出格式 (OUTPUT FORMAT)

    tcpdump 的 输出格式 取决于 协议. 下面的 描述 给出 大多数 格式 的简要说明 和 范例.

    链路层报头 (Link Level Headers)

    如果 给出 '-e' 选项 就 显示 链路层报头.

    在 以太网上, 显示 报文的 源目地址, 协议 和 报文长度.

    在 FDDI 网络上, '-e' 选项 导致 tcpdump 显示出 `帧控制(frame control)' 域, 源目地址 和 报文长度. (`帧控制' 域 负责 解释 其余的 报文. 普通报文 (例如 装载 IP数据报 的 报文) 是 `异步' 报文, 优先级 介于 0 到 7 (例如, `async4'). 那些 被认为 携带了 802.2 逻辑链路控制(LLC) 报文; 如果 它们 不是 ISO 数据报 或者 所谓的 SNAP 报文, 就显示 LLC 报头.

    (注意: 以下 描述中 假设 你 熟悉 RFC-1144 中说明的 SLIP 压缩算法.)

    在 SLIP 链路上, tcpdump 显示出 方向指示 (``I'' 指 inbound(进入), ``O'' 指 outbound(离开)), 报文类型 和 压缩信息. 首先显示的 是 报文类型. 有三种 类型 ip, utcpctcp. 对于 ip 报文 不再 显示 更多的 链路信息. 对于 TCP 报文, 在 类型 后面 显示 连接标识. 如果 报文 是 压缩过的, 就显示出 它的 编码报头. 这种 特殊情况 以 *S+n*SA+n 的 形式 显示, 这里的 n 是 流序号 (或者 流序号 和 ack) 的 变化总量. 如果 不是 特殊情况, 就显示出 0 或 多个 变化. 变化 由 U (urgent pointer), W (window), A (ack), S (sequence number) 和 I (packet ID) 指明, 后跟 一个 变化量(+n or -n), 或者 是一个 新值(=n). 最后显示 报文中 的 数据总量, 以及 压缩报头 的 长度.

    例如, 下面一行 显示了 一个 传出的 压缩的 TCP 报文, 有一个 隐含的 连接标识; 确认(ack)的 变化量是 6, 流序号 增加 49, 报文ID 增加 6; 有三个字节的数据 和六个字节 的 压缩报头:

    O ctcp * A+6 S+49 I+6 3 (6)
    

    ARP/RARP 报文

    Arp/rarp 报文 的 输出 是 请求类型 及其 参数. 输出格式 大体上 能够 自我解释. 这里 是一个 简单的例子, 来自 主机 rtsg 到 主机 csam 的 'rlogin' 开始 部分:

    arp who-has csam tell rtsg
    arp reply csam is-at CSAM
    
    

    第一行 说明 rtsg 发出 一个 arp 报文 询问 internet 主机 csam 的 以太网地址. Csam 用 它的 以太地址 作应答 (这个例子中, 以太地址 是 大写的, internet 地址为 小写).

    如果 用 tcpdump -n 看 就 清楚一些:

    arp who-has 128.3.254.6 tell 128.3.254.68
    arp reply 128.3.254.6 is-at 02:07:01:00:01:c4
    

    如果 用 tcpdump -e, 可以 看到 实际上 第一个 报文 是 广播, 第二个报文 是 点到点 的:

    RTSG Broadcast 0806  64: arp who-has csam tell rtsg
    CSAM RTSG 0806  64: arp reply csam is-at CSAM
    
    

    这里 第一个 报文 指出 以太网源地址是 RTSG, 目的地址 是 以太网广播地址, 类型域 为 16进制数 0806 (类型 ETHER_ARP), 报文全长 64 字节.

    TCP 报文

    (注意: 以下的描述中 假设 你 熟悉 RFC-793 中 说明的 TCP 协议, 如果 你不了解 这个 协议, 无论是 本文 还是 tcpdump 都对你 用处 不大)

    一般说来 tcp 协议的 输出格式是:

    src > dst: flags data-seqno ack window urgent options
    
    

    Srcdst 是 源目IP地址和端口. Flags 是 S (SYN), F (FIN), P (PUSH) 或 R (RST) 或 单独的 `.'(无标志), 或者是 它们的 组合. Data-seqno 说明了 本报文中的数据 在 流序号 中的 位置 (见下例). Ack 是 在这条连接上 信源机 希望 下一个 接收的 字节的 流序号 (sequence number). Window 是 在这条连接上 信源机 接收缓冲区 的 字节大小. Urg 表明 报文内 是 `紧急(urgent)' 数据. Options 是 tcp 选项, 用 尖括号 括起 (例如, <mss 1024>).

    Src, dstflags 肯定 存在. 其他域 依据 报文的 tcp 报头 内容, 只输出 有必要 的 部分.

    下面 是 从 主机 rtsg rlogin 到 主机 csam 的 开始部分.

    rtsg.1023 > csam.login: S 768512:768512(0) win 4096 <mss 1024>
    csam.login > rtsg.1023: S 947648:947648(0) ack 768513 win 4096 <mss 1024>
    rtsg.1023 > csam.login: . ack 1 win 4096
    rtsg.1023 > csam.login: P 1:2(1) ack 1 win 4096
    csam.login > rtsg.1023: . ack 2 win 4096
    rtsg.1023 > csam.login: P 2:21(19) ack 1 win 4096
    csam.login > rtsg.1023: P 1:2(1) ack 21 win 4077
    csam.login > rtsg.1023: P 2:3(1) ack 21 win 4077 urg 1
    csam.login > rtsg.1023: P 3:4(1) ack 21 win 4077 urg 1
    
    

    第一行 是说 从 rtsg 的 tcp 端口 1023 向 csam 的 login 端口 发送 报文. S 标志 表明 设置了 SYN 标志. 报文 的 流序号 是 768512, 没有 数据. (这个写成 `first:last(nbytes)', 意思是 `从 流序号 firstlast, 不包括 last, 有 nbytes 字节的 用户数据'.) 此时 没有 捎带确认(piggy-backed ack), 有效的 接收窗口 是 4096 字节, 有一个 最大分段长度(max-segment-size) 的 选项, 请求 设置 mss 为 1024 字节.

    Csam 用类似的 形式 应答, 只是 增加了 一个 对 rtsg SYN 的 捎带确认. 然后 Rtsg 确认 csam 的 SYN. `.' 意味着 没有 设置 标志. 这个 报文 不包含 数据, 因此 也就 没有 数据的流序号. 注意这个 确认流序号 是一个 小整数(1). 当 tcpdump 第一次 发现 一个 tcp 会话时, 它 显示 报文 携带的 流序号. 在 随后收到的 报文里, 它 显示 当前报文 和 最初那个 报文 的 流序号 之 差. 这 意味着 从第一个报文 开始, 以后的 流序号 可以 理解成 数据流 中的 相对位移 (每个报文 的 第一个 数据字节 从 '1' 计数). `-S' 选项 能够 改变 这个 特性, 直接 显示 原始的 流序号.

    在 第六行, rtsg 传给 csam 19 个字节 的 数据 (字节 2 到 20). 报文中 设置了 PUSH 标志. 第七行 csam 表明 它 收到了 rtsg 的 数据, 字节序号是 21, 但不包括 第21个 字节. 显然 大多数 数据 在 socket 的 缓冲区内, 因为 csam 的 接收窗口 收到的 数据小于 19 个 字节. 同时 csam 向 rtsg 发送了 一个字节 的 数据. 第八和第九行 显示 csam 发送了 两个字节 的 紧急数据 到 rtsg.

    如果 捕捉区 设置的 过小, 以至于 tcpdump 不能 捕捉到 完整的 TCP 报头, tcpdump 会 尽可能的 翻译 已捕获的 部分, 然后 显示 ``[|tcp]'', 表明 无法 翻译 其余 部分. 如果 报头 包含 有问题的 选项 (选项表 长度太小 或者 超出 报头范围), tcpdump 显示 ``[bad opt]'' 并且 不再 翻译 其他 选项部分 (因为 它 不可能 判断出从哪儿 开始). 如果 报头长度 表明 存在 选项, 但是 IP 数据报 长度 不够, 不可能 真的 保存 选项, tcpdump 就显示 ``[bad hdr length]''.

    UDP 报文

    UDP 格式 就象 这个 rwho 报文 显示的:

    actinide.who > broadcast.who: udp 84
    
    

    就是说 把一个 udp 数据报 从 主机 actinidewho 端口 发送到 broadcast, Internet 广播地址 的 who 端口. 报文 包含 84字节 的 用户数据.

    某些 UDP 服务 能够 识别出来(从 源目端口号 上), 因而 显示出 更高层的 协议信息. 特别是 域名服务请求(RFC-1034/1035) 和 NFS 的 RPC 调用(RFC-1050).

    UDP 名字服务请求 (Name Server Requests)

    (注意: 以下的描述中 假设 你 熟悉 RFC-1035 说明的 域名服务协议. 如果你 不熟悉 这个协议, 下面的内容 可能 看起来是 天书.)

    名字服务请求 的 格式 是

    src > dst: id op? flags qtype qclass name (len)
    
    h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
    
    

    主机 h2opolo 访问 helios 上的 域名服务, 询问和 ucbvax.berkeley.edu. 关联的 地址记录(qtype=A). 查询号是 `3'. `+' 表明 设置了 递归请求 标志. 查询长度是 37 字节, 不包括 UDP 和 IP 头. 查询操作 是 普通的 Query 操作, 因此 op 域 可以 忽略. 如果 op 设置成 其他什么东西, 它应该 显示在 `3' 和 `+' 之间. 类似的, qclass 是 普通的 C_IN 类型, 也被 忽略了. 其他类型的 qclass 应该 在 `A' 后面 显示.

    Tcpdump 会检查 一些 不规则 情况, 相应的 结果 作为 补充域 放在 方括号内: 如果 某个 查询 包含 回答, 名字服务 或 管理机构部分, 就把 ancount, nscount, 或 arcount 显示成 `[na]', `[nn]' 或 `[nau]', 这里的 n 代表 相应的 数量. 如果 在 第二和第三字节 中, 任何一个 回答位(AA, RA 或 rcode) 或 任何一个 `必须为零' 的位 被 置位, 就显示 `[b2&3=x]', 这里的 x 是 报头 第二和第三字节 的 16进制数.

    UDP 名字服务回答

    名字服务回答的 格式 是

    src > dst:  id op rcode flags a/n/au type class data (len)
    
    helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
    helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
    
    

    第一个例子里, helios 回答了 h2opolo 发出的 标识为3 的 询问, 一共是 3 个 回答记录, 3 个 名字服务记录 和 7 个管理结构记录. 第一个 回答纪录 的 类型是 A (地址), 数据是 internet 地址 128.32.137.3. 回答的 全长 为 273 字节, 不包括 UDP 和 IP 报头. 作为 A 记录的 class(C_IN) 可以 忽略 op (询问) 和 rcode (NoError).

    在第二个例子里, helios 对 标识为2 的 询问 作出 域名不存在 (NXDomain) 的 回答, 没有 回答记录, 一个 名字服务记录, 没有 管理结构部分.
     `*' 表明 设置了 权威回答(authoritative answer).  由于 没有 回答记录, 这里就 不显示 type, class 和 data.

    其他 标志 字符 可以 显示为 `-' (没有设置递归有效(RA)) 和 `|' (设置 消息截短(TC)). 如果 `问题' 部分 没有 有效的 内容, 就 显示 `[nq]'.

    注意 名字服务的 询问和回答 一般说来 比较大, 68 字节的 snaplen 可能无法 捕捉到 足够的 报文内容. 如果 你 的确 在 研究 名字服务 的 情况, 可以使用 -s 选项 增大 捕捉缓冲区. `-s 128' 应该 效果 不错了.

    NFS 请求和响应

    Sun NFS (网络文件系统) 的 请求和响应 显示格式 是:

    src.xid > dst.nfs: len op args
    src.nfs > dst.xid: reply stat len op results
    
    
    sushi.6709 > wrl.nfs: 112 readlink fh 21,24/10.73165
    wrl.nfs > sushi.6709: reply ok 40 readlink "../var"
    sushi.201b > wrl.nfs:
            144 lookup fh 9,74/4096.6878 "xcolors"
    wrl.nfs > sushi.201b:
            reply ok 128 lookup fh 9,74/4134.3150
    
    
    

    在第一行, 主机 sushiwrl 发送 号码为 6709 的 交互会话 (注意 源主机 后面的 数字 是 交互号, 不是 端口). 这项请求 长 112 字节, 不包括 UDP 和 IP 报头. 在 文件句柄 (fh) 21,24/10.731657119 上执行 readlink (读取 符号连接) 操作. (如果 运气 不错, 就象 这种情况, 文件句柄 可以 依次翻译成 主次设备号, i 节点号, 和 事件号(generation number). ) Wrl 回答 `ok' 和 连接的 内容.

    在第三行, sushi 请求 wrl 在 目录文件 9,74/4096.6878 中 查找 `xcolors'. 注意 数据的 打印格式 取决于 操作类型. 格式 应该 可以自我说明.

    给出 -v (verbose) 选项 可以 显示 附加信息. 例如:

    
    sushi.1372a > wrl.nfs:
            148 read fh 21,11/12.195 8192 bytes @ 24576
    wrl.nfs > sushi.1372a:
            reply ok 1472 read REG 100664 ids 417/0 sz 29388
    
    
    

    (-v 同时 使它 显示 IP 报头的 TTL, ID, 和 分片域, 在 这个例子里 把它们省略了.) 在第一行, sushi 请求 wrl 从 文件 21,11/12.195 的 偏移位置 24576 开始, 读取 8192 字节. Wrl 回答 `ok'; 第二行 显示的 报文 是 应答的 第一个 分片, 因此 只有 1472 字节 (其余数据 在 后续的 分片中传过来, 但由于 这些分片里 没有 NFS 甚至 UDP 报头, 因此 根据 所使用的 过滤器表达式, 有可能 不再显示). -v 选项 还会 显示 一些 文件属性 (它们 作为 文件数据 的 附带部分 传回来): 文件类型 (普通文件 ``REG''), 存取模式 (八进制数), uid 和 gid, 以及 文件大小.

    如果再给一个 -v 选项 (-vv), 还能 显示 更多的细节.

    注意 NFS 请求 的 数据量 非常大, 除非 增加 snaplen, 否则 很多细节 无法显示. 试一试 `-s 192' 选项.

    NFS 应答报文 没有明确 标明 RPC 操作. 因此 tcpdump 保留有 ``近来的'' 请求 记录, 根据 交互号 匹配 应答报文. 如果 应答报文 没有 相应的 请求报文, 它 就 无法分析.

    KIP Appletalk (UDP 上的 DDP)

    Appletalk DDP 报文 封装在 UDP 数据报 中, 解包后 按 DDP 报文 转储 (也就是说, 忽略 所有的 UDP 报头 信息). 文件 /etc/atalk.names 用来 把 appletalk 网络和节点号 翻译成 名字. 这个文件 的 行格式 是

    number       name
    
    1.254              ether
    16.1            icsd-net
    1.254.110       ace
    
    

    前两行 给出了 appletalk 的 网络名称. 第三行 给出 某个主机 的 名字 (主机和网络 依据 第三组 数字 区分 - 网络号 一定 是 两组数字, 主机号 一定 是 三组 数字.) 号码 和 名字 用 空白符(空格或tab) 隔开. /etc/atalk.names 文件 可以 包含 空行 或 注释行(以`#'开始的行).

    Appletalk 地址 按 这个格式 显示

    net.host.port
    
    144.1.209.2 > icsd-net.112.220
    office.2 > icsd-net.112.220
    jssmag.149.235 > icsd-net.2
    
    

    (如果 不存在 /etc/atalk.names , 或者 里面 缺少 有效项目, 就以 数字形式 显示 地址.) 第一个例子里, 网络 144.1 的 209 节点的 NBP (DDP 端口 2) 向 网络 icsd 的 112 节点 的 220 端口 发送数据. 第二行 和 上面 一样, 只是 知道了 源节点 的 全称 (`office'). 第三行 是从 网络 jssmag 的 149 节点 的 235 端口 向 icsd-net 的 NBP 端口广播 (注意 广播地址 (255) 隐含在 无主机号的 网络名字 中 - 所以 在 /etc/atalk.names 中 区分 节点名 和 网络名 是个 好主意).

    Tcpdump 可以 翻译 NBP (名字联结协议) 和 ATP (Appletalk 交互协议) 的 报文内容. 其他协议 只转储 协议名称 (或号码, 如果 还 没给 这个协议 注册 名称) 和 报文大小.

    NBP 报文 的 输出格式 就象 下面的 例子:

    icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"
    jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250
    techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186
    
    

    第一行 是 网络 icsd 的 112 主机 在 网络 jssmag 上的 广播, 对 名字 laserwriter 做 名字查询请求. 名字查询请求 的 nbp 标识号 是 190. 第二行 显示的是 对 这个请求 的 回答 (注意 它们 有 同样的 标识号), 主机 jssmag.209 表示 在它的 250 端口 注册了 一个 laserwriter 的 资源, 名字是 "RM1140". 第三行 是 这个请求 的 其他回答, 主机 techpit 的 186 端口 有 laserwriter 注册的 "techpit".

    ATP 报文 格式 如 下例 所示:

    jssmag.209.165 > helios.132: atp-req  12266<0-7> 0xae030001
    helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000
    jssmag.209.165 > helios.132: atp-req  12266<3,5> 0xae030001
    helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
    helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
    jssmag.209.165 > helios.132: atp-rel  12266<0-7> 0xae030001
    jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002
    
    

    Jssmag.209 向 主机 helios 发起 12266 号 交互操作, 请求 8 个 报文(`<0-7>'). 行尾的 十六进制数 是 请求中 `userdata' 域 的 值.

    Helios 用 8 个 512字节 的 报文 应答. 跟在 交互号 后面的 `:digit' 给出了 交互过程中 报文的 序列号, 括弧内的 数字 是 报文的 数据量, 不包括 atp 报头. 报文 7 的 `*' 表明 设置了 EOM 位.

    然后 Jssmag.209 请求 重传 第 3 & 5 报文. Helios 做了 重传后 jssmag.209 结束 这次 交互操作. 最后, jssmag.209 发起 下一次 交互请求. 请求中的 `*' 表明 没有 设置 XO (exactly once) 位.

    IP 分片

    分片的 Internet 数据报 显示为

    (frag id:size@offset+)
    (frag id:size@offset)
    
    

    (第一种 形式 表明 还有 更多的 分片. 第二种 形式 表明 这是 最后 一片.)

    Id 是 分片 标识号. Size 是 分片 大小 (字节), 不包括 IP 报头. Offset 是 该分片 在 原数据报 中 的 偏移 (单位是字节).

    每一个 分片 的 信息 都可以 打印出来. 第一个 分片 包含了 高层 协议 报头, 显示 协议信息 后 显示 分片 的 信息. 第一个 分片 以后的 分片 不再 含有高层协议 报头, 所以 在 源目地址 后面 只显示 分片 信息. 例如, 下面是 从 arizona.edu 到 lbl-rtsg.arpa 的 一部分 ftp 传输, 途经的 CSNET 看上去 处理不了 576 字节的 数据报:

    arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+)
    arizona > rtsg: (frag 595a:204@328)
    rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560
    
    

    这里 有几点 需要注意: 首先, 第二行的 地址 不包括 端口号. 这是因为 TCP 协议 信息 全部 装到了 第一个 分片内, 所以 显示 后续分片的 时候 不可能 知道端口 或 流序号. 其次, 第一行的 tcp 流序号部分 看上去有 308 字节的 用户数据, 实际上 是 512 字节 (第一个 分片的 308 和 第二个 分片的 204 字节). 如果你 正在 寻找 流序号中 的 空洞, 或者 试图 匹配 报文 的 确认(ack), 那你上当了.

    如果 报文的 IP 标有 不要分片 标志, 那么 在尾部 显示 (DF).

    时戳

    缺省情况下, 所有 输出行 的 前面 都有 时戳. 时戳 就是 当前时间, 显示格式为

    hh:mm:ss.frac
    

    精度 和 内核时钟 一样. 时戳 反映了 内核 收到 报文 的 时间. 从 以太接口 收到 报文 到 内核 响应 '报文就绪' 中断 有一个 滞后, 该 滞后 不被考虑. 

  • 相关阅读:
    linux基础知识之vi编辑器的使用
    Linux的通信命令
    Linux学习之文件的压缩与解压
    Liux文件操作
    Linux简单学习
    Drupal V7.3.1 框架处理不当导致SQL注入
    Typecho V1.1反序列化导致代码执行分析
    浅析PHP反序列化漏洞之PHP常见魔术方法(一)
    python正则表达式记录
    SQLmap源码分析之框架初始化(一)
  • 原文地址:https://www.cnblogs.com/fanweisheng/p/11101402.html
Copyright © 2011-2022 走看看