zoukankan      html  css  js  c++  java
  • 459. Repeated Substring Pattern

    Given a non-empty string check if it can be constructed by taking a substring of it and appending multiple copies of the substring together. You may assume the given string consists of lowercase English letters only and its length will not exceed 10000.

    Example 1:

    Input: "abab"
    Output: True
    Explanation: It's the substring "ab" twice.
    

    Example 2:

    Input: "aba"
    Output: False
    

    Example 3:

    Input: "abcabcabcabc"
    Output: True
    Explanation: It's the substring "abc" four times. (And the substring "abcabc" twice.)

    重复子串的长度一定是字符串长度的约数,从len/2开始查找,如果找到了能被整除的,len/i = m,把字符串从0~i这一“重复” pattern append m次,看是否与原字符串相同。如果遍历完所有约数没有结果,返回false

    时间:O(N^2),空间O(N)

    class Solution {
        public boolean repeatedSubstringPattern(String s) {
            for(int i = 1; i < s.length(); i++) {
                if(s.length() % i == 0) {
                    int m = s.length() / i;
                    StringBuilder sb = new StringBuilder();
                    for(int j = 0; j < m; j++) {
                        sb.append(s.substring(0, i));
                    }
                    if(sb.toString().equals(s))
                        return true;
                }
            }
            return false;
        }
    }

    改进:

    时间:worst case O(n^2), average O(n) ~ O(n^2),空间:O(1)

    class Solution {
        public boolean repeatedSubstringPattern(String s) {
            for(int i = s.length() / 2; i >= 1 ; i--) {
                if(s.length() % i == 0) {
                    int m = s.length() / i;
                    String sb = s.substring(0, i);
                    int j;
                    for(j = 1; j < m; j++) {
                        if(!sb.equals(s.substring(j*i,i+j*i)))
                            break;
                    }
                    if(j == m)
                        return true;
                }
            }
            return false;
        }
    }
  • 相关阅读:
    hdu 4614 线段树 二分
    cf 1066d 思维 二分
    lca 最大生成树 逆向思维 2018 徐州赛区网络预赛j
    rmq学习
    hdu 5692 dfs序 线段树
    dfs序介绍
    poj 3321 dfs序 树状数组 前向星
    cf 1060d 思维贪心
    【PAT甲级】1126 Eulerian Path (25分)
    【PAT甲级】1125 Chain the Ropes (25分)
  • 原文地址:https://www.cnblogs.com/fatttcat/p/10018377.html
Copyright © 2011-2022 走看看