Given a set of N
people (numbered 1, 2, ..., N
), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b]
, it means it is not allowed to put the people numbered a
and b
into the same group.
Return true
if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 2000
0 <= dislikes.length <= 10000
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
- There does not exist
i != j
for whichdislikes[i] == dislikes[j]
.
同 785. Is Graph Bipartite? https://www.cnblogs.com/fatttcat/p/10064006.html
Graph Coloring + DFS
先根据dislikes中的信息建graph,再dfs判断color
time: O(V+E), space: O(V+E)
class Solution { int[] colors; public boolean possibleBipartition(int N, int[][] dislikes) { List<Integer>[] g = new ArrayList[N]; for(int i = 0; i < N; i++) g[i] = new ArrayList<>(N); for(int[] d : dislikes) { int a = d[0] - 1; int b = d[1] - 1; g[a].add(b); g[b].add(a); } colors = new int[N]; for(int i = 0; i < N; i++) { if(colors[i] == 0 && !checkColor(g, i, 1)) return false; } return true; } private boolean checkColor(List<Integer>[] graph, int node, int color) { colors[node] = color; for(int i = 0; i < graph[node].size(); i++) { int dis = graph[node].get(i); if(colors[dis] == colors[node]) return false; if(colors[dis] == 0 && !checkColor(graph, dis, -color)) return false; } return true; } }