zoukankan      html  css  js  c++  java
  • 搭建神经网络的步骤

    神经网络的搭建课分四步完成:准备工作、前向传播、反向传播和循环迭代。 
    √0.导入模块,生成模拟数据集;
    import
    常量定义
    生成数据集
    √1.前向传播:定义输入、参数和输出
    x= y_=
    w1= w2=
    a= y=
    √2. 反向传播:定义损失函数、反向传播方法
    loss=
    train_step=
    √3. 生成会话,训练 STEPS 轮
    with tf.session() as sess
    Init_op=tf. global_variables_initializer()
    sess_run(init_op)
    STEPS=3000
    for i in range(STEPS):
    start=
    end=
    sess.run(train_step, feed_dict:)

    python代码:

    #coding:utf-8
    #0导入模块,生成模拟数据集。
    #tensorflow学习笔记(北京大学) tf3_6.py 完全解析神经网络搭建学习
    import tensorflow as tf
    import numpy as np
    BATCH_SIZE = 8
    SEED = 23455
    
    rdm = np.random.RandomState(SEED)
    X = rdm.rand(32,2)
    Y_ = [[int(x0 + x1 < 1)] for (x0, x1) in X]  #for(x0,x1) in x是从x中取出x0和x1的所有值,[int(x0+x1<1)]意思时x0+x1<1,则Y_=1;否则为0;
    print("X:
    ",X)
    print("Y_:
    ",Y_)
    x = tf.placeholder(tf.float32, shape=(None, 2))#用placeholder实现输入定义
    y_= tf.placeholder(tf.float32, shape=(None, 1))#用placeholder实现占位
    w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))#正态分布随机数
    w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))#正态分布随机数
    a = tf.matmul(x, w1)#点积
    y = tf.matmul(a, w2)#点积
    
    #2定义损失函数及反向传播方法。
    loss_mse = tf.reduce_mean(tf.square(y-y_)) 
    train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss_mse)
    #train_step = tf.train.MomentumOptimizer(0.001,0.9).minimize(loss_mse)
    #train_step = tf.train.AdamOptimizer(0.001).minimize(loss_mse)
    
    #3生成会话,训练STEPS轮
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()#初始化
        sess.run(init_op)
        # 输出目前(未经训练)的参数取值。
        print("w1:
    ", sess.run(w1))
        print("w2:
    ", sess.run(w2))
        print("
    ")
        
        # 训练模型。
        STEPS = 3000
        for i in range(STEPS):#3000轮
            start = (i*BATCH_SIZE) % 32 #i*8%32
            end = start + BATCH_SIZE    #i*8%32+8
            sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
            if i % 500 == 0:
                total_loss = sess.run(loss_mse, feed_dict={x: X, y_: Y_})
                print("After %d training step(s), loss_mse on all data is %g" % (i, total_loss))
        
        # 输出训练后的参数取值。
        print("
    ")
        print("w1:
    ", sess.run(w1))
        print("w2:
    ", sess.run(w2))
    #,只搭建承载计算过程的
    #计算图,并没有运算,如果我们想得到运算结果就要用到“会话 Session()”了。 
    #√会话(Session): 执行计算图中的节点运算  
        print("w1:
    ", w1)
        print("w2:
    ", w2)
    """
    X:
    [[ 0.83494319  0.11482951]
     [ 0.66899751  0.46594987]
     [ 0.60181666  0.58838408]
     [ 0.31836656  0.20502072]
     [ 0.87043944  0.02679395]
     [ 0.41539811  0.43938369]
     [ 0.68635684  0.24833404]
     [ 0.97315228  0.68541849]
     [ 0.03081617  0.89479913]
     [ 0.24665715  0.28584862]
     [ 0.31375667  0.47718349]
     [ 0.56689254  0.77079148]
     [ 0.7321604   0.35828963]
     [ 0.15724842  0.94294584]
     [ 0.34933722  0.84634483]
     [ 0.50304053  0.81299619]
     [ 0.23869886  0.9895604 ]
     [ 0.4636501   0.32531094]
     [ 0.36510487  0.97365522]
     [ 0.73350238  0.83833013]
     [ 0.61810158  0.12580353]
     [ 0.59274817  0.18779828]
     [ 0.87150299  0.34679501]
     [ 0.25883219  0.50002932]
     [ 0.75690948  0.83429824]
     [ 0.29316649  0.05646578]
     [ 0.10409134  0.88235166]
     [ 0.06727785  0.57784761]
     [ 0.38492705  0.48384792]
     [ 0.69234428  0.19687348]
     [ 0.42783492  0.73416985]
     [ 0.09696069  0.04883936]]
    Y_:
    [[1], [0], [0], [1], [1], [1], [1], [0], [1], [1], [1], [0], [0], [0], [0], [0], [0], [1], [0], [0], [1], [1], [0], [1], [0], [1], [1], [1], [1], [1], [0], [1]]
    w1:
    [[-0.81131822  1.48459876  0.06532937]
     [-2.4427042   0.0992484   0.59122431]]
    w2:
    [[-0.81131822]
     [ 1.48459876]
     [ 0.06532937]]
    
    
    After 0 training step(s), loss_mse on all data is 5.13118
    After 500 training step(s), loss_mse on all data is 0.429111
    After 1000 training step(s), loss_mse on all data is 0.409789
    After 1500 training step(s), loss_mse on all data is 0.399923
    After 2000 training step(s), loss_mse on all data is 0.394146
    After 2500 training step(s), loss_mse on all data is 0.390597
    
    
    w1:
    [[-0.70006633  0.9136318   0.08953571]
     [-2.3402493  -0.14641267  0.58823055]]
    w2:
    [[-0.06024267]
     [ 0.91956186]
     [-0.0682071 ]]
    """
    学习内容来自:慕课APP中人工智能实践-Tensorflow笔记;北京大学曹健老师的课程
    #初始化
  • 相关阅读:
    Linux c++ time different
    数据库初始化以及制作为Windows服务
    数据库无法注册服务
    JS中String转int
    数据库服务注册(使用命令注册):解决my.ini配置文件不存在的问题
    数据库启动丢失MSVCP120.dll
    jQuery
    BOM和DOM
    用yield实现python协程
    深入理解python中的yield关键字
  • 原文地址:https://www.cnblogs.com/fcfc940503/p/10929120.html
Copyright © 2011-2022 走看看