zoukankan      html  css  js  c++  java
  • JAVA 泛型

    一、概述

           泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、泛型方法。 Java语言引入泛型的好处是安全简单。

    在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的。对于强制类型转换错误的情况,编译器可能不提示错误,在运行的时候才出现异常,这是一个安全隐患。
    泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,以提高代码的重用率

    二、泛型的规则限制

    1、泛型的类型参数只能是类类型(包括自定义类),不能是简单类型(int、char等)。

    2、同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

    3、泛型的类型参数可以有多个。

    4、泛型的参数类型可以使用extends语句,例如<T extends superclass>。习惯上称为“有界类型”。

    5、泛型的参数类型还可以是通配符类型。例如Class<?> classType = Class.forName("java.lang.String");

    三、T和Class<T>以及Class<?>的理解

      Class类的实例表示java应用运行时的类(class ans enum)或接口(interface and annotation)。

           每个java类运行时都在JVM里表现为一个Class对象,可通过类名.class,类型.getClass(),Class.forName("类名")等方法获取Class对象

      数组同样也被映射为为Class 对象的一个类,所有具有相同元素类型和维数的数组都共享该 Class 对象。基本类型boolean,byte,char,short,int,long,float,double和关键字void同样表现为 Class  对象。
     
    T  bean ;
    Class<T> bean;
    Class<?> bean;
     
     在利用反射获取属性时,遇到这样的写法,对此专门查些资料研究了一下。单独的T 代表一个类型 而 Class<T>和Class<?>代表这个类型所对应的类
      Class<T>在实例化的时候,T要替换成具体类
      Class<?>它是个通配泛型,?可以代表任何类型   
      <? extends T>受限统配,表示T的一个未知子类。
      <? super T>下限统配,表示T的一个未知父类。

    在之前的JDK版本中,Class.newInstance() 方法的定义返回 Object,您很可能要将该返回类型强制转换为另一种类型:

    class Class {
         Object newInstance();
     }

    但是使用泛型,您定义 Class.newInstance() 方法具有一个更加特定的返回类型:

    class Class<T> {
         T newInstance();
    } 

    T指的是由此 Class 对象建模的类的类型。例如,String.class 的类型是 Class<String>。如果将被建模的类未知,则使用 Class<?>

    如何创建一个Class<T>类型的实例?

      就像使用非泛型代码一样,有两种方式:调用方法 Class.forName() 或者使用类常量X.class。      Class.forName() 被定义为返 回 Class<?>。另一方面,类常量 X.class 被定义为具有类型 Class<X>,所 以 String.class 是Class<String> 类型的。

           让 Foo.class 是 Class<Foo> 类型有什么好处?

           大的好处是,通过类型推理的魔力,可以提高使用反射的代码的类型安全。另外,还不需要将 Foo.class.newInstance() 强制类型转换为 Foo。比如有一个方法,它从数据库检索一组对象,并返回 JavaBeans 对象的一个集合。您通过反射来实例化和初始化创建的对象,但是这并不意味着类型安全必须完全被抛至脑后。例如下面这个方法:

    public static<T> List<T> getRecords(Class<T> c, Selector s) {
         // Use Selector to select rows
         List<T> list = new ArrayList<T>();
         for (/* iterate over results */) {
             T row = c.newInstance(); // use reflection to set fields from result
             list.add(row);
          }
          return list;
    }

    可以简单的像下面这样简单地调用该方法:

    List<FooRecord> l = getRecords(FooRecord.class, fooSelector); 

    泛型上下限:

    <? extends Collection> 这里?代表一个未知的类型,
    但是,这个未知的类型实际上是Collection的一个子类,Collection是这个通配符的上限.
    举个例子

    class Test <T extends Collection> { }

    <T extends Collection>其中,限定了构造此类实例的时候T是一个确定类型(具体类型),这个类型实现了Collection接口,
    但是实现 Collection接口的类很多很多,如果针对每一种都要写出具体的子类类型,那也太麻烦了,干脆还不如用
    Object通用一下。<? extends Collection>其中,?是一个未知类型,是一个通配符泛型,这个类型是实现Collection接口即可。

     四、泛型类

      泛型类型用于类的定义中,被称为泛型类。通过泛型可以完成对一组类的操作对外开放相同的接口。最典型的就是各种容器类,如:List、Set、Map。

    例子:

    //此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
    //在实例化泛型类时,必须指定T的具体类型
    public class Generic<T>{ 
        //key这个成员变量的类型为T,T的类型由外部指定  
        private T key;
    
        public Generic(T key) { //泛型构造方法形参key的类型也为T,T的类型由外部指定
            this.key = key;
        }
    
        public T getKey(){ //泛型方法getKey的返回值类型为T,T的类型由外部指定
            return key;
        }
    }
    //泛型的类型参数只能是类类型(包括自定义类),不能是简单类型
    //传入的实参类型需与泛型的类型参数类型相同,即为Integer.
    Generic<Integer> genericInteger = new Generic<Integer>(123456);
    
    //传入的实参类型需与泛型的类型参数类型相同,即为String.
    Generic<String> genericString = new Generic<String>("key_vlaue");
    Log.d("泛型测试","key is " + genericInteger.getKey());
    Log.d("泛型测试","key is " + genericString.getKey());
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is 123456
    12-27 09:20:04.432 13063-13063/? D/泛型测试: key is key_vlaue

     五、泛型接口

      泛型接口与泛型类的定义及使用基本相同。泛型接口常被用在各种类的生产器中,可以看一个例子:

    //定义一个泛型接口
    public interface Generator<T> {
        public T next();
    }

    当实现泛型接口的类,未传入泛型实参时:

    /**
     * 未传入泛型实参时,与泛型类的定义相同,在声明类的时候,需将泛型的声明也一起加到类中
     * 即:class FruitGenerator<T> implements Generator<T>{
     * 如果不声明泛型,如:class FruitGenerator implements Generator<T>,编译器会报错:"Unknown class"
     */
    class FruitGenerator<T> implements Generator<T>{
        @Override
        public T next() {
            return null;
        }
    }

    当实现泛型接口的类,传入泛型实参时:

    /**
     * 传入泛型实参时:
     * 定义一个生产器实现这个接口,虽然我们只创建了一个泛型接口Generator<T>
     * 但是我们可以为T传入无数个实参,形成无数种类型的Generator接口。
     * 在实现类实现泛型接口时,如已将泛型类型传入实参类型,则所有使用泛型的地方都要替换成传入的实参类型
     * 即:Generator<T>,public T next();中的的T都要替换成传入的String类型。
     */
    public class FruitGenerator implements Generator<String> {
    
        private String[] fruits = new String[]{"Apple", "Banana", "Pear"};
    
        @Override
        public String next() {
            Random rand = new Random();
            return fruits[rand.nextInt(3)];
        }
    }

     五、泛型方法

    在java中,泛型类的定义非常简单,但是泛型方法就比较复杂了。

    泛型类,是在实例化类的时候指明泛型的具体类型;泛型方法,是在调用方法的时候指明泛型的具体类型

    /**
     * 泛型方法的基本介绍
     * @param tClass 传入的泛型实参
     * @return T 返回值为T类型
     * 说明:
     *     1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
     *     2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
     *     3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
     *     4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型。
     */
    public <T> T genericMethod(Class<T> tClass)throws InstantiationException ,
      IllegalAccessException{
            T instance = tClass.newInstance();
            return instance;
    }
    Object obj = genericMethod(Class.forName("com.test.test"));

     

    泛型方法的基本用法:

    直接上例子:

    public class GenericTest {
       //这个类是个泛型类,在上面已经介绍过
       public class Generic<T>{     
            private T key;
    
            public Generic(T key) {
                this.key = key;
            }
    
            //我想说的其实是这个,虽然在方法中使用了泛型,但是这并不是一个泛型方法。
            //这只是类中一个普通的成员方法,只不过他的返回值是在声明泛型类已经声明过的泛型。
            //所以在这个方法中才可以继续使用 T 这个泛型。
            public T getKey(){
                return key;
            }
    
            /**
             * 这个方法显然是有问题的,在编译器会给我们提示这样的错误信息"cannot reslove symbol E"
             * 因为在类的声明中并未声明泛型E,所以在使用E做形参和返回值类型时,编译器会无法识别。
            public E setKey(E key){
                 this.key = keu
            }
            */
        }
    
        /** 
         * 这才是一个真正的泛型方法。
         * 首先在public与返回值之间的<T>必不可少,这表明这是一个泛型方法,并且声明了一个泛型T
         * 这个T可以出现在这个泛型方法的任意位置.
         * 泛型的数量也可以为任意多个 
         *    如:public <T,K> K showKeyName(Generic<T> container){
         *        ...
         *        }
         */
        public <T> T showKeyName(Generic<T> container){
            System.out.println("container key :" + container.getKey());
            //当然这个例子举的不太合适,只是为了说明泛型方法的特性。
            T test = container.getKey();
            return test;
        }
    
        //这也不是一个泛型方法,这就是一个普通的方法,只是使用了Generic<Number>这个泛型类做形参而已。
        public void showKeyValue1(Generic<Number> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
        //这也不是一个泛型方法,这也是一个普通的方法,只不过使用了泛型通配符?
        //同时这也印证了泛型通配符章节所描述的,?是一种类型实参,可以看做为Number等所有类的父类
        public void showKeyValue2(Generic<?> obj){
            Log.d("泛型测试","key value is " + obj.getKey());
        }
    
         /**
         * 这个方法是有问题的,编译器会为我们提示错误信息:"UnKnown class 'E' "
         * 虽然我们声明了<T>,也表明了这是一个可以处理泛型的类型的泛型方法。
         * 但是只声明了泛型类型T,并未声明泛型类型E,因此编译器并不知道该如何处理E这个类型。
        public <T> T showKeyName(Generic<E> container){
            ...
        }  
        */
    
        /**
         * 这个方法也是有问题的,编译器会为我们提示错误信息:"UnKnown class 'T' "
         * 对于编译器来说T这个类型并未项目中声明过,因此编译也不知道该如何编译这个类。
         * 所以这也不是一个正确的泛型方法声明。
        public void showkey(T genericObj){
    
        }
        */
    
        public static void main(String[] args) {
    
    
        }
    }

     泛型方法可以出现在任何地方和任何场景中使用。但是有一种情况是非常特殊的,当泛型方法出现在泛型类中时,我们再通过一个例子看一下

    类中的泛型方法:

    上例子:

    public class GenericFruit {
        class Fruit{
            @Override
            public String toString() {
                return "fruit";
            }
        }
    
        class Apple extends Fruit{
            @Override
            public String toString() {
                return "apple";
            }
        }
    
        class Person{
            @Override
            public String toString() {
                return "Person";
            }
        }
    
        class GenerateTest<T>{
            public void show_1(T t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型E,这种泛型E可以为任意类型。可以类型与T相同,也可以不同。
            //由于泛型方法在声明的时候会声明泛型<E>,因此即使在泛型类中并未声明泛型,编译器也能够正确识别泛型方法中识别的泛型。
            public <E> void show_3(E t){
                System.out.println(t.toString());
            }
    
            //在泛型类中声明了一个泛型方法,使用泛型T,注意这个T是一种全新的类型,可以与泛型类中声明的T不是同一种类型。
            public <T> void show_2(T t){
                System.out.println(t.toString());
            }
        }
    
        public static void main(String[] args) {
            Apple apple = new Apple();
            Person person = new Person();
    
            GenerateTest<Fruit> generateTest = new GenerateTest<Fruit>();
            //apple是Fruit的子类,所以这里可以
            generateTest.show_1(apple);
            //编译器会报错,因为泛型类型实参指定的是Fruit,而传入的实参类是Person
            //generateTest.show_1(person);
    
            //使用这两个方法都可以成功
            generateTest.show_2(apple);
            generateTest.show_2(person);
    
            //使用这两个方法也都可以成功
            generateTest.show_3(apple);
            generateTest.show_3(person);
        }
    }

    再看一个泛型方法和可变参数的例子:

    public <T> void printMsg( T... args){
        for(T t : args){
            Log.d("泛型测试","t is " + t);
        }
    }
    printMsg("111",222,"aaaa","2323.4",55.55);

     五、静态方法与泛型

    静态方法有一种情况需要注意一下,那就是在类中的静态方法使用泛型:静态方法无法访问类上定义的泛型;如果静态方法操作的引用数据类型不确定的时候,必须要将泛型定义在方法上。

    即:如果静态方法要使用泛型的话,必须将静态方法也定义成泛型方法

    public class StaticGenerator<T> {
        ....
        ....
        /**
         * 如果在类中定义使用泛型的静态方法,需要添加额外的泛型声明(将这个方法定义成泛型方法)
         * 即使静态方法要使用泛型类中已经声明过的泛型也不可以。
         * 如:public static void show(T t){..},此时编译器会提示错误信息:
              "StaticGenerator cannot be refrenced from static context"
         */
        public static <T> void show(T t){
    
        }
    }

     六、泛型数组说明

    看到了很多文章中都会提起泛型数组,经过查看sun的说明文档,在java中是”不能创建一个确切的泛型类型的数组”的。

    也就是说下面的这个例子是不可以的:

    List<String>[] ls = new ArrayList<String>[10]; 

     而使用通配符创建泛型数组是可以的,如下面这个例子:

    List<?>[] ls = new ArrayList<?>[10];  

    这样也是可以的:

    List<String>[] ls = new ArrayList[10];

    下面使用Sun的一篇文档的一个例子来说明这个问题:

    List<String>[] lsa = new List<String>[10]; // Not really allowed.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Unsound, but passes run time store check    
    String s = lsa[1].get(0); // Run-time error: ClassCastException.
     
      这种情况下,由于JVM泛型的擦除机制,在运行时JVM是不知道泛型信息的,所以可以给oa[1]赋上一个ArrayList而不会出现异常,但是在取出数据的时候却要做一次类型转换,所以就会出现ClassCastException,如果可以进行泛型数组的声明,上面说的这种情况在编译期将不会出现任何的警告和错误,只有在运行时才会出错。而对泛型数组的声明进行限制,对于这样的情况,可以在编译期提示代码有类型安全问题,比没有任何提示要强很多。

    下面采用通配符的方式是被允许的:数组的类型不可以是类型变量,除非是采用通配符的方式,因为对于通配符的方式,最后取出数据是要做显式的类型转换的。

    List<?>[] lsa = new List<?>[10]; // OK, array of unbounded wildcard type.    
    Object o = lsa;    
    Object[] oa = (Object[]) o;    
    List<Integer> li = new ArrayList<Integer>();    
    li.add(new Integer(3));    
    oa[1] = li; // Correct.    
    Integer i = (Integer) lsa[1].get(0); // OK 

    七、泛型的擦除

      为了实现与非泛型代码的兼容,Java语言的泛型采用擦除(Erasure)来实现,也就是泛型基本上由编译器来实现,由编译器执行类型检查和类型推断,然后在生成字节码之前将其清除掉,虚拟机是不知道泛型存在的。这样的话,泛型和非泛型的代码就可以混合运行。

    部分参考:http://blog.csdn.net/s10461/article/details/53941091

  • 相关阅读:
    嵌入式linux问题杂锦
    QT creator 调试问题
    torcs代码
    ubuntu12.04安装KDevelop
    ubuntu12.04LTS安装以及卸载 QT4.8.6和QT creator2.5.2
    用vs2010编译vs2013建的工程
    mysql+matlab配置
    流形学习笔记
    可用的rtmp互联网地址
    信用卡术语
  • 原文地址:https://www.cnblogs.com/fclbky/p/8038129.html
Copyright © 2011-2022 走看看