zoukankan      html  css  js  c++  java
  • 8,双均线策略

    import tushare as ts
    import pandas as pd
    from pandas import DataFrame,Series
    df = pd.read_csv('maotai.csv',index_col='date',parse_dates=['date'])
    df.drop(labels='Unnamed: 0',axis=1,inplace=True)
    df
    

      

    ma5 = df['close'].rolling(5).mean()
    ma30 =  df['close'].rolling(30).mean()
    df['ma5'] = ma5
    df['ma30'] = ma30
    

    s1 = ma5 < ma30 T->F金叉 F->T死叉 s2 = ma5 >= ma30 s1 T T F F T T F F

    s2 F F T T F F T T T F T T T F T F T F F F T F

    ~(s1 | s2.shift(1))

    s1 = ma5 < ma30 
    s2 = ma5 >= ma30
    df.loc[~(s1 | s2.shift(1))].index
    

      

    df.loc[s1&s2.shift(1)].index
    

     问题:如果我从假如我从2010年1月1日开始,初始资金为100000元,金叉尽量买入,死叉全部卖出,则到今天为止,我的炒股收益率如何? 

    df = df['2010':'2019']
    df
    

      

    df['ma5']=df['close'].rolling(5).mean()
    df['ma30']=df['close'].rolling(30).mean()
    

      

    sr1 = df['ma5'] < df['ma30']
    sr2 = df['ma5'] >= df['ma30']
    death_cross = df[sr1 & sr2.shift(1)].index
    golden_cross = df[~(sr1 | sr2.shift(1))].index
    

      

    first_money = 100000
    money = first_money
    hold = 0#持有多少股
    sr1 = pd.Series(1, index=golden_cross)
    sr2 = pd.Series(0, index=death_cross)
    #根据时间排序
    sr = sr1.append(sr2).sort_index()
    
    for i in range(0, len(sr)):
        p = df['open'][sr.index[i]]
        if sr[i] == 1:
            #金叉
            buy = (money // (100 * p))
            hold += buy*100
            money -= buy*100*p
        else:
            money += hold * p
            hold = 0
    
            
    p = df['open'][-1]
    now_money = hold * p + money
    
    print(now_money - first_money)
    

      结果:1086009.8999999994

     

    二、基于茅台数据的处理,熟悉DataFrame

    import tushare as ts
    import pandas as pd
    from pandas import DataFrame,Series
    

    DataFrame

    - 索引:
        - df[col] df[[c1,c2]]:取列
        - df.loc[index] : 取行
        - df.loc[index,col] : 取元素
    - 切片:
        - df[a:b]:切行
        - df.loc[:,a:b]:切列
    - df运算:Series运算一致
    - df级联:拼接

     

    df = pd.read_csv('maotai.csv',index_col='date',parse_dates=['date'])
    df.drop(labels='Unnamed: 0',axis=1,inplace=True)
    df
    

      

    #假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?
    price_last = df['open'][-1]
    df = df['2010':'2019'] #剔除首尾无用的数据
    #Pandas提供了resample函数用便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:
    df_monthly = df.resample("M").first()
    df_yearly = df.resample("Y").last()[:-1] #去除最后一年
    cost_money = 0
    hold = 0 #每年持有的股票
    for year in range(2010, 2020):
        
        cost_money -= df_monthly.loc[str(year)]['open'].sum()*100
        hold += len(df_monthly[str(year)]['open']) * 100
        if year != 2019:
            cost_money += df_yearly[str(year)]['open'][0] * hold
            hold = 0 #每年持有的股票
    cost_money += hold * price_last
    
    print(cost_money)
    

      

    结果:310250.69999999984

     

  • 相关阅读:
    第九章 引用
    第八章 指针
    第六章 面向对象
    第五章 if语句与运算符
    第四章 C++数据类型
    第三章 初步了解函数
    第二章 做一个简短的C++程序
    第一章 初始C++
    vs2012 快捷键+方法
    vue如何修改生效日期范围,以及转化成yyyy-mm-dd的格式
  • 原文地址:https://www.cnblogs.com/feifeifeisir/p/10497998.html
Copyright © 2011-2022 走看看