zoukankan      html  css  js  c++  java
  • 傅里叶变换

    傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。

    傅里叶变换的核心在于任何信号都可以表示成正弦信号的叠加。

    为什么傅里叶变换要把信号分解为正弦波的组合,而不是方波或三角波?

    正弦波有个其它任何波形(恒定的直流波形除外)所不具备的特点:正弦波输入至任何线性系统,出来的还是正弦波,改变的仅仅是幅值和相位,即:正弦波输入至线性系统,不会产生新的频率成分(非线性系统如变频器,就会产生新的频率成分,称为谐波)。用单位幅值的不同频率的正弦波输入至某线性系统,记录其输出正弦波的幅值和频率的关系,就得到该系统的幅频特性,记录输出正弦波的相位和频率的关系,就得到该系统的相频特性。

    线性系统具备一个特点,多个正弦波叠加后输入至一个系统,输出是所有正弦波独立输入时对应输出的叠加。

    也就是说,我们只要研究正弦波的输入输出关系,就可以知道该系统对任意输入信号的响应。

    如何求傅里叶变换?

    连续傅里叶变换公式如下:

      傅里叶的伟大之处不在于如何进行傅里叶变换,而是在于给出了“任何连续周期信号可以由一组适当的正弦曲线组合而成”这一伟大的论断。

      正弦函数有一个特点,叫做正交性,所谓正交性,是指任意两个不同频率的正弦波的乘积,在两者的公共周期内的积分等于零。如下:

      这是一个非常有用的特性,我们可以利用这个特性设计一个如下的检波器(下称检波器A):

      检波器A由一个乘法器和一个积分器构成,乘法器的一个输入为已知频率f的单位幅值正弦波(下称标准正弦信号f),另一个输入为待变换的信号。检波器A的输出只与待变换信号中的频率为f的正弦分量的幅值和相位有关。

      

    傅里叶变换检波器A

      待变换信号可能包含频率为f的分量(下称f分量),也可能不包含f分量,总之,可能包含各种频率分量。一句话,待变换信号是未知的,并且可能很复杂!

      因为其它频率分量与标准正弦信号f的乘积的积分都等于零,检波器A可以当它们不存在!经过检波器A,输出就只剩下与f分量有关的一个量,这个量等于待变换信号中f分量与标准正弦信号f的乘积的积分。

      很容易得到的结论是:

      如果输出不等于零,就说明输入信号包含f分量!

      这个输出是否就是f分量呢?

      答案:不一定!

      正弦波还有下述的特性:

      相同频率的正弦波,当相位差为90°时(正交),在一个周期内的乘积的积分值等于零;当相位相同时,积分值达到最大,等于两者的有效值的乘积,当相位相反时,积分值达到最小,等于两者的有效值的乘积取反。

      我们知道标准正弦信号f的初始相位为零,但是,我们不知道f分量的初始相位!如果f分量与标准正弦信号f的相位刚好差90°(或270°),检波器A输出也等于零!为此,我们再设计一个检波器B:

      检波器B与检波器A的不同之处在于检波器B用一个标准余弦信号f(与标准正弦信号A相位差90°)替代滤波器A中的标准正弦信号f。如果待变换信号中包含f分量,检波器A和检波器B至少有一个输出不等于零。

      

    傅里叶变换检波器B

      利用三角函数的基础知识可以证明,不论f分量的初始相位如何,检波器A和检波器B输出信号的幅值的方和根就等于f分量的幅值;而检波器B和检波器A的幅值的比值等于f分量初始相位的正切,如此如此……即可求出f分量的相位。

      我们再把标准正弦信号f和标准余弦信号f的频率替换成我们关心的任意频率,就可以得到输入信号的各种频率成分。如果知道输入信号的频率,把这个频率作为基波频率f0,用f0、2f0、3f0依次替代标准正弦信号f和标准余弦信号f的频率,就可以得到输入信号的基波、2次谐波和3次谐波。

      这就是傅里叶变换!

    傅里叶级数

  • 相关阅读:
    POJ 1328 Radar Installation
    POJ 1700 Crossing River
    POJ 1700 Crossing River
    poj 3253 Fence Repair (贪心,优先队列)
    poj 3253 Fence Repair (贪心,优先队列)
    poj 3069 Saruman's Army(贪心)
    poj 3069 Saruman's Army(贪心)
    Redis 笔记与总结2 String 类型和 Hash 类型
    数据分析方法有哪些_数据分析方法
    数据分析方法有哪些_数据分析方法
  • 原文地址:https://www.cnblogs.com/fellow1988/p/7123945.html
Copyright © 2011-2022 走看看