zoukankan      html  css  js  c++  java
  • 朴素贝叶斯个人理解

    九、朴素贝叶斯分类
    P(A) - A事件发生的概率
    P(A,B) - A和B两个事件同时发生的概率,联合概率
    P(A|B) - 在B事件发生的条件下A事件发生的概率,条件概率
    贝叶斯定理:P(A,B) = P(B)P(A|B)
                         P(B,A) = P(A)P(B|A)
    P(B)P(A|B) = P(A)P(B|A)
                    P(A)P(B|A)
    P(A|B) = -------------
                          P(B)
    x1 x2 ... xn -> ?
    \_________/
            X         -> 0 0.2
                             1 0.3   <-
                             2 0.05  
    X样本属于C类别的概率是多少?
                    P(C)P(X|C)
    P(C|X) = ------------    (贝叶斯定理)
                         P(X)
    P(C)P(X|C)
    = P(C,X)
    = P(X,C)
    = P(x1,x2,x3,C)
    = P(x1|x2,x3,C)P(x2,x3,C)
    = P(x1|x2,x3,C)P(x2|x3,C)P(x3,C)
    = P(x1|x2,x3,C)P(x2|x3,C)P(x3|C)P(C)
    朴素:条件独立,所有的特征值彼此没有任何依赖性。
    = P(x1|C)P(x2|C)P(x3|C)P(C)
    1 7 9 -> 0
    ...
    8 2 0 -> 0
    ...
    6 4 3 -> 0
    ...
    1 9 2 -> 0
    ...
    1 2 3 -> ? 0  
    拥有足够的训练样本,可以通过统计的方法获得各个特征值的概率,或者在已知每个特征所服从概率分布的前提下,利用概率密度或者概率质量函数计算出每个特征值出现的概率。

    ---

    计算样本数据属于某一类别的方法,就是上述贝叶斯推导过程。然后再分别计算出需要预测的样本属于各个分类的概率,概率大的为最后的结果。

  • 相关阅读:
    超级楼梯
    hdu1040
    hdu2033(惭愧)
    hdu2032杨辉三角
    hdu1013Digital Roots
    hdu2031
    Linux信号(signal) 机制分析
    android init重启service(进程)
    [android] init进程 .rc文件中service、action的parsing
    oom_adj
  • 原文地址:https://www.cnblogs.com/fengff/p/10083827.html
Copyright © 2011-2022 走看看