zoukankan      html  css  js  c++  java
  • 朴素贝叶斯个人理解

    九、朴素贝叶斯分类
    P(A) - A事件发生的概率
    P(A,B) - A和B两个事件同时发生的概率,联合概率
    P(A|B) - 在B事件发生的条件下A事件发生的概率,条件概率
    贝叶斯定理:P(A,B) = P(B)P(A|B)
                         P(B,A) = P(A)P(B|A)
    P(B)P(A|B) = P(A)P(B|A)
                    P(A)P(B|A)
    P(A|B) = -------------
                          P(B)
    x1 x2 ... xn -> ?
    \_________/
            X         -> 0 0.2
                             1 0.3   <-
                             2 0.05  
    X样本属于C类别的概率是多少?
                    P(C)P(X|C)
    P(C|X) = ------------    (贝叶斯定理)
                         P(X)
    P(C)P(X|C)
    = P(C,X)
    = P(X,C)
    = P(x1,x2,x3,C)
    = P(x1|x2,x3,C)P(x2,x3,C)
    = P(x1|x2,x3,C)P(x2|x3,C)P(x3,C)
    = P(x1|x2,x3,C)P(x2|x3,C)P(x3|C)P(C)
    朴素:条件独立,所有的特征值彼此没有任何依赖性。
    = P(x1|C)P(x2|C)P(x3|C)P(C)
    1 7 9 -> 0
    ...
    8 2 0 -> 0
    ...
    6 4 3 -> 0
    ...
    1 9 2 -> 0
    ...
    1 2 3 -> ? 0  
    拥有足够的训练样本,可以通过统计的方法获得各个特征值的概率,或者在已知每个特征所服从概率分布的前提下,利用概率密度或者概率质量函数计算出每个特征值出现的概率。

    ---

    计算样本数据属于某一类别的方法,就是上述贝叶斯推导过程。然后再分别计算出需要预测的样本属于各个分类的概率,概率大的为最后的结果。

  • 相关阅读:
    40. Combination Sum II
    39. Combination Sum
    找一找
    37. Sudoku Solver
    Activiti 多个并发子流程的应用
    BPMN2新规范与Activiti5
    BPMN这点事-BPMN扩展元素
    JAVA规则引擎 -- Drools
    工作流Activiti5流程变量 任务变量 setVariables 跟 setVariablesLocal区别
    activiti 学习( 三 ) 之 流程启动者
  • 原文地址:https://www.cnblogs.com/fengff/p/10083827.html
Copyright © 2011-2022 走看看