zoukankan      html  css  js  c++  java
  • Iris Classification on PyTorch

    Breast Cancer on PyTorch

    Code

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.l1 = nn.Linear(30, 60)
            self.a1 = nn.Sigmoid()
            self.l2 = nn.Linear(60, 2)
            self.a2 = nn.ReLU()
            self.l3 = nn.Softmax(dim=1)
    
        def forward(self, x):
            x = self.l1(x)
            x = self.a1(x)
            x = self.l2(x)
            x = self.a2(x)
            x = self.l3(x)
            return x
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = Net()
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    损失函数图像:

    nn.Sequential

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = nn.Sequential(
            nn.Linear(30, 60),
            nn.Sigmoid(),
            nn.Linear(60, 2),
            nn.ReLU(),
            nn.Softmax(dim=1)
        )
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    模型性能:

                  precision    recall  f1-score   support
    
          setosa       1.00      1.00      1.00        14
      versicolor       1.00      1.00      1.00        16
       virginica       1.00      1.00      1.00        20
    
        accuracy                           1.00        50
       macro avg       1.00      1.00      1.00        50
    weighted avg       1.00      1.00      1.00        50
    
  • 相关阅读:
    Asp.net MVC企业级开发(01)---Autofac
    3°、6°带高斯-克吕格投影
    使用html2canvas实现网页截图并嵌入到PDF
    中国UTM分区
    遇到乱码不怕不怕啦——计算机字符编码详尽讲解
    ArcGIS Engine10.2如何安装在 VisualStudio2013 开发环境下
    【OSG学习笔记之一:】OSG+VS2010+win7 64位环境搭建
    Python回调函数用法实例详解
    python下编译py成pyc和pyo
    ERDAS文件格式:IGE、IMG、RRD、AUX
  • 原文地址:https://www.cnblogs.com/fengyubo/p/9141130.html
Copyright © 2011-2022 走看看