zoukankan      html  css  js  c++  java
  • Iris Classification on PyTorch

    Breast Cancer on PyTorch

    Code

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.l1 = nn.Linear(30, 60)
            self.a1 = nn.Sigmoid()
            self.l2 = nn.Linear(60, 2)
            self.a2 = nn.ReLU()
            self.l3 = nn.Softmax(dim=1)
    
        def forward(self, x):
            x = self.l1(x)
            x = self.a1(x)
            x = self.l2(x)
            x = self.a2(x)
            x = self.l3(x)
            return x
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = Net()
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    损失函数图像:

    nn.Sequential

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = nn.Sequential(
            nn.Linear(30, 60),
            nn.Sigmoid(),
            nn.Linear(60, 2),
            nn.ReLU(),
            nn.Softmax(dim=1)
        )
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    模型性能:

                  precision    recall  f1-score   support
    
          setosa       1.00      1.00      1.00        14
      versicolor       1.00      1.00      1.00        16
       virginica       1.00      1.00      1.00        20
    
        accuracy                           1.00        50
       macro avg       1.00      1.00      1.00        50
    weighted avg       1.00      1.00      1.00        50
    
  • 相关阅读:
    Luogu P2181 对角线 简单数学,细节
    vscode 配置C、C++环境,编写运行C、C++(转)
    用家庭电脑架设minecraft服务器
    用阿里云架设我的世界(minecraft)服务器
    在线数独
    数学物理笔记
    复活的asdf1229
    test
    GitHub从小白到精通(第一章 初识)
    抛砖引玉,浅讲Handler和线程的关系
  • 原文地址:https://www.cnblogs.com/fengyubo/p/9141130.html
Copyright © 2011-2022 走看看