zoukankan      html  css  js  c++  java
  • Iris Classification on PyTorch

    Breast Cancer on PyTorch

    Code

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.l1 = nn.Linear(30, 60)
            self.a1 = nn.Sigmoid()
            self.l2 = nn.Linear(60, 2)
            self.a2 = nn.ReLU()
            self.l3 = nn.Softmax(dim=1)
    
        def forward(self, x):
            x = self.l1(x)
            x = self.a1(x)
            x = self.l2(x)
            x = self.a2(x)
            x = self.l3(x)
            return x
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = Net()
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    损失函数图像:

    nn.Sequential

    # encoding:utf8
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from matplotlib import pyplot as plt
    import numpy as np
    
    
    if __name__ == '__main__':
        breast_cancer = load_breast_cancer()
    
        x_train, x_test, y_train, y_test = train_test_split(breast_cancer.data, breast_cancer.target, test_size=0.25)
        x_train, x_test = torch.tensor(x_train, dtype=torch.float), torch.tensor(x_test, dtype=torch.float)
        y_train, y_test = torch.tensor(y_train, dtype=torch.long), torch.tensor(y_test, dtype=torch.long)
    
        net = nn.Sequential(
            nn.Linear(30, 60),
            nn.Sigmoid(),
            nn.Linear(60, 2),
            nn.ReLU(),
            nn.Softmax(dim=1)
        )
    
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(net.parameters(), lr=0.005)  # PyTorch suit to tiny learning rate
    
        error = list()
    
        for epoch in range(250):
            optimizer.zero_grad()
            y_pred = net(x_train)
            loss = criterion(y_pred, y_train)
            loss.backward()
            optimizer.step()
            error.append(loss.item())
    
        y_pred = net(x_test)
        y_pred = torch.argmax(y_pred, dim=1)
    
        # it is necessary that drawing the loss plot when we fine tuning the model
        plt.plot(np.arange(1, len(error)+1), error)
        plt.show()
    
        print(classification_report(y_test, y_pred, target_names=breast_cancer.target_names))
    
    

    模型性能:

                  precision    recall  f1-score   support
    
          setosa       1.00      1.00      1.00        14
      versicolor       1.00      1.00      1.00        16
       virginica       1.00      1.00      1.00        20
    
        accuracy                           1.00        50
       macro avg       1.00      1.00      1.00        50
    weighted avg       1.00      1.00      1.00        50
    
  • 相关阅读:
    IDEA 基本配置
    IDEA 创建一个普通的java项目
    Intellij Idea 创建一个Web项目
    override的实现原理
    elasticsearch 复杂查询小记
    post 中文数据到elasticsearch restful接口报json_parse_exception 问题
    String intern()方法详解
    JVM的DirectMemory设置
    深入浅出 JIT 编译器
    为什么 JVM 不用 JIT 全程编译
  • 原文地址:https://www.cnblogs.com/fengyubo/p/9141130.html
Copyright © 2011-2022 走看看