zoukankan      html  css  js  c++  java
  • Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    思路:DP。

    我们用dp[i][j]表示到达matrix[i][j]的全部可能路线数。则当matrix[i][j] = 0,即当前位置没有障碍时,dp[i][j] = dp[i - 1][j] + dp[i][j - 1];否则dp[i][j] = 0。

    因此我们有递推公式:dp[i][j] = (1 - matrix[i][j]) * (dp[i - 1][j] + dp[i][j - 1]);

     1 class Solution {
     2 public:
     3     int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
     4         int m = obstacleGrid.size();
     5         if (m == 0) return 0;
     6         int n = obstacleGrid[0].size();
     7         if (n == 0) return 0;
     8         vector<int> tem(n, 0);
     9         vector<vector<int> > dp(m, tem);
    10         dp[0][0] = 1 - obstacleGrid[0][0];
    11         for (int i = 1; i < m; i++)
    12             dp[i][0] = (1 - obstacleGrid[i][0]) * dp[i - 1][0];
    13         for (int i = 1; i < n; i++)
    14             dp[0][i] = (1 - obstacleGrid[0][i]) * dp[0][i - 1];
    15         for (int i = 1; i < m; i++)
    16             for (int j = 1; j < n; j++)
    17                 dp[i][j] = (1 - obstacleGrid[i][j]) *
    18                     (dp[i - 1][j] + dp[i][j - 1]);
    19         return dp[m - 1][n - 1];
    20     }
    21 };
  • 相关阅读:
    [python第七课]字符串和常用数据结构
    深浅拷贝与循环引用问题
    CSS居中总结
    CSS布局总结
    跨域
    函数节流与防抖
    浏览器渲染原理及渲染阻塞
    进程与线程
    前端之网络攻击
    前端之缓存
  • 原文地址:https://www.cnblogs.com/fenshen371/p/4935383.html
Copyright © 2011-2022 走看看