Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:DP。
我们用dp[i][j]表示到达matrix[i][j]的全部可能路线数。则当matrix[i][j] = 0,即当前位置没有障碍时,dp[i][j] = dp[i - 1][j] + dp[i][j - 1];否则dp[i][j] = 0。
因此我们有递推公式:dp[i][j] = (1 - matrix[i][j]) * (dp[i - 1][j] + dp[i][j - 1]);
1 class Solution { 2 public: 3 int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { 4 int m = obstacleGrid.size(); 5 if (m == 0) return 0; 6 int n = obstacleGrid[0].size(); 7 if (n == 0) return 0; 8 vector<int> tem(n, 0); 9 vector<vector<int> > dp(m, tem); 10 dp[0][0] = 1 - obstacleGrid[0][0]; 11 for (int i = 1; i < m; i++) 12 dp[i][0] = (1 - obstacleGrid[i][0]) * dp[i - 1][0]; 13 for (int i = 1; i < n; i++) 14 dp[0][i] = (1 - obstacleGrid[0][i]) * dp[0][i - 1]; 15 for (int i = 1; i < m; i++) 16 for (int j = 1; j < n; j++) 17 dp[i][j] = (1 - obstacleGrid[i][j]) * 18 (dp[i - 1][j] + dp[i][j - 1]); 19 return dp[m - 1][n - 1]; 20 } 21 };