zoukankan      html  css  js  c++  java
  • 高斯核函数的代码体现


    直观理解高斯核函数

    import numpy as np
    import matplotlib.pyplot as plt
     
    x = np.arange(-4, 5, 1) 
    x
    # array([-4, -3, -2, -1,  0,  1,  2,  3,  4])
     
    y = np.array((x >= -2) & (x <= 2), dtype='int')
    y
    # array([0, 0, 1, 1, 1, 1, 1, 0, 0])
     
    plt.scatter(x[y==0], [0]*len(x[y==0]))
    plt.scatter(x[y==1], [0]*len(x[y==1]))
    plt.show()
    

    使用高斯核函数,让数据可分

    def gaussian(x, l):
        gamma = 1.0
        return np.exp(-gamma * (x-l)**2)
     
     
    l1, l2 = -1, 1
    
    X_new = np.empty((len(x), 2))
    for i, data in enumerate(x):
        X_new[i, 0] = gaussian(data, l1)
        X_new[i, 1] = gaussian(data, l2)
     
     
    plt.scatter(X_new[y==0,0], X_new[y==0,1])
    plt.scatter(X_new[y==1,0], X_new[y==1,1])
    plt.show()
    

    这样数据就变成线性可分了


    scikit-learn 中的 RBF 核

    查看 gamma 的影响

    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn import datasets
    
    X, y = datasets.make_moons(noise=0.15, random_state=666)
    
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    


    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    from sklearn.svm import SVC
    
    def RBFKernelSVC(gamma):
        return Pipeline([
            ("std_scaler", StandardScaler()),
            ("svc", SVC(kernel="rbf", gamma=gamma))
        ])
      
    
    svc = RBFKernelSVC(gamma=1)
    svc.fit(X, y)
    
    Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
      decision_function_shape=None, degree=3, gamma=1, kernel='rbf',
      max_iter=-1, probability=False, random_state=None, shrinking=True,
      tol=0.001, verbose=False))])
    
    def plot_decision_boundary(model, axis):
        
        x0, x1 = np.meshgrid(
            np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
            np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
        )
        X_new = np.c_[x0.ravel(), x1.ravel()]
    
        y_predict = model.predict(X_new)
        zz = y_predict.reshape(x0.shape)
    
        from matplotlib.colors import ListedColormap
        custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
        
        plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
    
    plot_decision_boundary(svc, axis=[-1.5, 2.5, -1.0, 1.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    


    gamma=100

    过拟合

    svc_gamma100 = RBFKernelSVC(gamma=100)
    svc_gamma100.fit(X, y)
    
    Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
      decision_function_shape=None, degree=3, gamma=100, kernel='rbf',
      max_iter=-1, probability=False, random_state=None, shrinking=True,
      tol=0.001, verbose=False))])
    
    plot_decision_boundary(svc_gamma100, axis=[-1.5, 2.5, -1.0, 1.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    


    gamma=10

    svc_gamma10 = RBFKernelSVC(gamma=10)
    svc_gamma10.fit(X, y)
    
    Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
      decision_function_shape=None, degree=3, gamma=10, kernel='rbf',
      max_iter=-1, probability=False, random_state=None, shrinking=True,
      tol=0.001, verbose=False))])
    
    plot_decision_boundary(svc_gamma10, axis=[-1.5, 2.5, -1.0, 1.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    


    gamma=0.5

    svc_gamma05 = RBFKernelSVC(gamma=0.5)
    svc_gamma05.fit(X, y)
    
    Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
      decision_function_shape=None, degree=3, gamma=0.5, kernel='rbf',
      max_iter=-1, probability=False, random_state=None, shrinking=True,
      tol=0.001, verbose=False))])
    
    plot_decision_boundary(svc_gamma05, axis=[-1.5, 2.5, -1.0, 1.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    


    gamma=0.1

    跟线性的决策边界差不多;

    欠拟合

    svc_gamma01 = RBFKernelSVC(gamma=0.1)
    svc_gamma01.fit(X, y)
    
    Pipeline(steps=[('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('svc', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
      decision_function_shape=None, degree=3, gamma=0.1, kernel='rbf',
      max_iter=-1, probability=False, random_state=None, shrinking=True,
      tol=0.001, verbose=False))])
    
    plot_decision_boundary(svc_gamma01, axis=[-1.5, 2.5, -1.0, 1.5])
    plt.scatter(X[y==0,0], X[y==0,1])
    plt.scatter(X[y==1,0], X[y==1,1])
    plt.show()
    

  • 相关阅读:
    面向对象
    模块和包
    re、logging日志模块
    银行营业网点管理系统——implt包(CityAreaDaoImpl )
    银行营业网点管理系统——implt包(CityAreaDaoImpl )
    银行营业网点管理系统——implt包(BranchesDaoImpl )
    银行营业网点管理系统——implt包(BranchesDaoImpl )
    银行营业网点管理系统——implt包(BranchesDaoImpl )
    银行营业网点管理系统——dao包(BranchesDao)
    银行营业网点管理系统——dao包(BranchesDao)
  • 原文地址:https://www.cnblogs.com/fldev/p/14353189.html
Copyright © 2011-2022 走看看