zoukankan      html  css  js  c++  java
  • Numpy 矩阵计算


    列表元素

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    n = 10
    l = [i for i in range(n)]
    l  # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    l * 2 
    # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    a = []
    for e in l:
        a.append(2 * e)
    a # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
    

    效率比较

    当 n 值比较大的时候,非常耗时;
    使用 for 循环效率远低于 生成表达式:(基本快一倍的时间) ;numpy 的计算则更快。

    n = 1000000
    l = [i for i in range(n)]
    
    %%time 
    a = []
    for e in l:
        a.append(2 * e)
    # CPU times: user 147 ms, sys: 15.2 ms, total: 163 ms
    # Wall time: 161 ms
    
    %%time 
    a = [2 * e for e in l]
    # CPU times: user 72.2 ms, sys: 20.5 ms, total: 92.7 ms
    # Wall time: 91 ms
    
    
    l1 = np.arange(n)
    %%time
    a = np.array(2*e for e in l1)
    # CPU times: user 12.5 ms, sys: 5.32 ms, total: 17.8 ms
    # Wall time: 17.7 ms
    

    numpy 中将每个数组看做向量或矩阵,这种方式也称作 Universal Functions,支持所有运算符运算。

    %%time
    a = 2 * l1
    # CPU times: user 3.58 ms, sys: 4.12 ms, total: 7.7 ms
    # Wall time: 5.4 ms
    
    l1 = np.arange(5)
    l1 # array([0, 1, 2, 3, 4])
    
    a = 2 * l1
    a # array([0, 2, 4, 6, 8])
    

    Universal Functions

    基本运算

    x + 1
    
    '''
        array([[ 2,  3,  4,  5,  6],
               [ 7,  8,  9, 10, 11],
               [12, 13, 14, 15, 16]]) 
    '''
     
    x * 2 
    '''
        array([[ 2,  4,  6,  8, 10],
               [12, 14, 16, 18, 20],
               [22, 24, 26, 28, 30]])
    '''
    
     
    # 保留浮点数除法
    x / 2 
    
    '''
        array([[0.5, 1. , 1.5, 2. , 2.5],
               [3. , 3.5, 4. , 4.5, 5. ],
               [5.5, 6. , 6.5, 7. , 7.5]])
    '''
     
    # 整数除法
    x // 2 
    '''
        array([[0, 1, 1, 2, 2],
               [3, 3, 4, 4, 5],
               [5, 6, 6, 7, 7]])
    '''
    
     
    # 幂运算
    x ** 2
    '''
        array([[  1,   4,   9,  16,  25],
               [ 36,  49,  64,  81, 100],
               [121, 144, 169, 196, 225]])
    '''
    
     
    # 取余
    x % 2
    '''
        array([[1, 0, 1, 0, 1],
               [0, 1, 0, 1, 0],
               [1, 0, 1, 0, 1]])
    '''
    

    特殊运算

    # 绝对值
    np.abs(x)
    
    '''
        array([[ 1,  2,  3,  4,  5],
               [ 6,  7,  8,  9, 10],
               [11, 12, 13, 14, 15]])
    '''
    
     
    np.sin(x)
    
    '''
        array([[ 0.84147098,  0.90929743,  0.14112001, -0.7568025 , -0.95892427],
               [-0.2794155 ,  0.6569866 ,  0.98935825,  0.41211849, -0.54402111],
               [-0.99999021, -0.53657292,  0.42016704,  0.99060736,  0.65028784]])
    '''
    
     
    np.exp(x)
    '''
        array([[2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 5.45981500e+01,
                1.48413159e+02],
               [4.03428793e+02, 1.09663316e+03, 2.98095799e+03, 8.10308393e+03,
                2.20264658e+04],
               [5.98741417e+04, 1.62754791e+05, 4.42413392e+05, 1.20260428e+06,
                3.26901737e+06]])
    '''
    
     
    np.power(3, x) # 3 的 x 次方
    
    '''
        array([[       3,        9,       27,       81,      243],
               [     729,     2187,     6561,    19683,    59049],
               [  177147,   531441,  1594323,  4782969, 14348907]])
    '''
     
    np.log(x) # 对矩阵的元素取 log 值
    '''
        array([[0.        , 0.69314718, 1.09861229, 1.38629436, 1.60943791],
               [1.79175947, 1.94591015, 2.07944154, 2.19722458, 2.30258509],
               [2.39789527, 2.48490665, 2.56494936, 2.63905733, 2.7080502 ]])
    '''
     
    # 以2为底数
    np.log2(x)
    
    '''
        array([[0.        , 1.        , 1.5849625 , 2.        , 2.32192809],
               [2.5849625 , 2.80735492, 3.        , 3.169925  , 3.32192809],
               [3.45943162, 3.5849625 , 3.70043972, 3.80735492, 3.9068906 ]])
    '''
     
    # 以10为底数
    np.log10(x)
    '''
        array([[0.        , 0.30103   , 0.47712125, 0.60205999, 0.69897   ],
               [0.77815125, 0.84509804, 0.90308999, 0.95424251, 1.        ],
               [1.04139269, 1.07918125, 1.11394335, 1.14612804, 1.17609126]])
    '''
    

    矩阵之间的计算

    对两个计算的矩阵的尺寸有要求

    a = np.arange(4).reshape(2, 2)
    a
    '''
        array([[0, 1],
               [2, 3]])
    '''
     
    b = np.full((2, 2), 10)
    b
    
    '''
        array([[10, 10],
               [10, 10]])
    '''
     
    a + b
    '''
        array([[10, 11],
               [12, 13]])
    '''
     
    a * b # 对应元素相乘;非矩阵乘法
    '''
        array([[ 0, 10],
               [20, 30]])
    '''
     
    a / b
    '''
        array([[0. , 0.1],
               [0.2, 0.3]])
    '''
     
    # 矩阵乘法
    np.dot(a, b) 
    '''
        array([[10, 10],
               [50, 50]])
    '''
    
    
     
    a.dot(b)
     
    '''
        array([[10, 10],
               [50, 50]])
    '''
    
    
     
    c = np.arange(4).reshape(2, 2)
    c 
    '''
        array([[0, 1],
               [2, 3]])
    '''
     
    a.dot(c) 
    '''
     array([[ 2,  3],
               [ 6, 11]])
    '''
        
    np.dot(a, c) 
    '''
        array([[ 2,  3],
               [ 6, 11]])
    '''
    
     
    # 转置
    a.T
    '''
        array([[0, 2],
               [1, 3]])
    '''
    

    向量和矩阵的运算

    v = np.array([1, 2])
     
    v + a
    '''
        array([[1, 3],
               [3, 5]])
    '''
     
    a
    '''
        array([[0, 1],
               [2, 3]])
    '''
     
    v2 = np.array([1, 2, 3])
    a + v2  # 报错
     
    '''
        ---------------------------------------------------------------------------
        
        ValueError                                Traceback (most recent call last)
        
        <ipython-input-48-a196cec3120e> in <module>
              1 v2 = np.array([1, 2, 3])
        ----> 2 a + v2
     
        ValueError: operands could not be broadcast together with shapes (2,2) (3,) 
    '''
    
     
    np.vstack([v] * a.shape[0])  # 实际是将这个矩阵 和 a 做处理
    
    '''
        array([[1, 2],
               [1, 2]])
    '''
    
     
    a.shape # (2, 2)
     
    a.size # 4
    
     
    a.shape[0]  # 2
     
    np.vstack([v] * a.shape[0])  + a
    '''
        array([[1, 3],
               [3, 5]])
    '''
     
    ## tile 函数
    
    np.tile(v, (3, 2))
    '''
        array([[1, 2, 1, 2],
               [1, 2, 1, 2],
               [1, 2, 1, 2]])
    '''
     
    v # array([1, 2])
    
     
    a 
    '''
        array([[0, 1],
               [2, 3]])
    '''
     
    v * a 
    '''
        array([[0, 2],
               [2, 6]])
    '''
     
    a * v 
    '''
        array([[0, 2],
               [2, 6]])
    '''
     
    v.dot(a)
    '''
        array([4, 7])
    '''
     
    a.dot(v)
    '''
        array([2, 8])
    '''
    

    矩阵的逆

    方阵才可能存在逆矩阵;非方阵可以求伪逆矩阵。

    a
    
    '''
        array([[0, 1],
               [2, 3]])
    '''
     
    invA = np.linalg.inv(a)
    invA 
    '''
        array([[-1.5,  0.5],
               [ 1. ,  0. ]])
    '''
     
    a.dot(invA) 
    '''
        array([[1., 0.],
               [0., 1.]])
    '''
     
    invA.dot(a) 
    '''
        array([[1., 0.],
               [0., 1.]])
    ''' 
    
    X = np.arange(16).reshape((2,8))
    X
    '''
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15]])
    '''
     
    np.linalg.inv(X)
     
    
    '''
        ---------------------------------------------------------------------------
        
        LinAlgError                               Traceback (most recent call last)
        
        <ipython-input-71-47889a8f1529> in <module>
        ----> 1 np.linalg.inv(X)
    
    
        <__array_function__ internals> in inv(*args, **kwargs)
    
    
        ~/opt/anaconda3/lib/python3.7/site-packages/numpy/linalg/linalg.py in inv(a)
            539     a, wrap = _makearray(a)
            540     _assert_stacked_2d(a)
        --> 541     _assert_stacked_square(a)
            542     t, result_t = _commonType(a)
            543 
    
    
        ~/opt/anaconda3/lib/python3.7/site-packages/numpy/linalg/linalg.py in _assert_stacked_square(*arrays)
            202         m, n = a.shape[-2:]
            203         if m != n:
        --> 204             raise LinAlgError('Last 2 dimensions of the array must be square')
            205 
            206 def _assert_finite(*arrays):
    
    
        LinAlgError: Last 2 dimensions of the array must be square
    
    '''
    
    ## 伪逆矩阵
    pinvX = np.linalg.pinv(X)
    pinvX
     
    '''
        array([[-1.35416667e-01,  5.20833333e-02],
               [-1.01190476e-01,  4.16666667e-02],
               [-6.69642857e-02,  3.12500000e-02],
               [-3.27380952e-02,  2.08333333e-02],
               [ 1.48809524e-03,  1.04166667e-02],
               [ 3.57142857e-02, -7.30583920e-18],
               [ 6.99404762e-02, -1.04166667e-02],
               [ 1.04166667e-01, -2.08333333e-02]])
    '''
    
     
    pinvX.shape # (8, 2)
     
    pinvX.dot(X)
    '''
        array([[ 4.16666667e-01,  3.33333333e-01,  2.50000000e-01,
                 1.66666667e-01,  8.33333333e-02,  4.78783679e-16,
                -8.33333333e-02, -1.66666667e-01],
               [ 3.33333333e-01,  2.73809524e-01,  2.14285714e-01,
                 1.54761905e-01,  9.52380952e-02,  3.57142857e-02,
                -2.38095238e-02, -8.33333333e-02],
               [ 2.50000000e-01,  2.14285714e-01,  1.78571429e-01,
                 1.42857143e-01,  1.07142857e-01,  7.14285714e-02,
                 3.57142857e-02,  2.84494650e-16],
               [ 1.66666667e-01,  1.54761905e-01,  1.42857143e-01,
                 1.30952381e-01,  1.19047619e-01,  1.07142857e-01,
                 9.52380952e-02,  8.33333333e-02],
               [ 8.33333333e-02,  9.52380952e-02,  1.07142857e-01,
                 1.19047619e-01,  1.30952381e-01,  1.42857143e-01,
                 1.54761905e-01,  1.66666667e-01],
               [-5.84467136e-17,  3.57142857e-02,  7.14285714e-02,
                 1.07142857e-01,  1.42857143e-01,  1.78571429e-01,
                 2.14285714e-01,  2.50000000e-01],
               [-8.33333333e-02, -2.38095238e-02,  3.57142857e-02,
                 9.52380952e-02,  1.54761905e-01,  2.14285714e-01,
                 2.73809524e-01,  3.33333333e-01],
               [-1.66666667e-01, -8.33333333e-02, -2.22044605e-16,
                 8.33333333e-02,  1.66666667e-01,  2.50000000e-01,
                 3.33333333e-01,  4.16666667e-01]])
    '''
    
     
    X.dot(pinvX)  # 计算结果不完全是0,是计算机的浮点误差造成的 
    
    '''
        array([[ 1.00000000e+00, -2.77555756e-16],
               [ 1.69309011e-15,  1.00000000e+00]])
    '''
    
  • 相关阅读:
    R获取指定GO term和KEGG pathway的gene list基因集
    统计和数学中常见的定理汇总 | 大数定律 | 中心极限定理
    Genome Aggregation Database (gnomAD) 简介 | 参考人群等位基因频率数据库
    SC3聚类 | 拉普拉斯矩阵 | Laplacian matrix | 图论 | R代码
    Bayesian Statistics for Genetics | 贝叶斯与遗传学
    似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码
    如何选题?| 什么样的科学问题 | 研究项目才是有意义的?| scientific method
    响应面分析 | response surface analysis | R代码
    乌龙茶生产过程中挥发性成分吲哚的形成 | Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process
    PPI | protein-protein interaction | 蛋白互作分析 | gene interaction | 基因互作
  • 原文地址:https://www.cnblogs.com/fldev/p/14371424.html
Copyright © 2011-2022 走看看