zoukankan      html  css  js  c++  java
  • 【HDU

    BUPT2017 wintertraining(15) #8A

    题意

    n(<100)个城市组成的树。A攻击i城市需要a[i]代价,B需要b[i]。如果一个城市的邻居被A攻击了,那么A攻击它只要A[i]/2(整除)的代价,B同理。求攻击全部城市的最小代价。

    题解

    这题很容易想到树形dp。
    每个节点为根的子树,有可能是:
    A从根的上面攻击下来,
    A从根或下面攻击到根上面,
    B从根的上面攻击下来,
    B从根或下面攻击到根上面。
    于是设计状态
    dp[i][0..1][0..1]分别对应i为根的子树上面四种状态下攻击整个子树的最小代价。

    然后dfs,在回溯的时候进行状态转移。

    代码

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    #define N 105
    #define inf 0x3f3f3f3f
    struct edge{
    	int to,next;
    }e[N<<1];
    int head[N],cnt;
    void add(int u,int v){
    	e[++cnt]=(edge){v, head[u]};
    	head[u]=cnt;
    }
    int a[N],b[N];
    int dp[N][2][2];
    int f[N][2];
    void dfs(int x, int fa){
    	//ha:先用A攻击x,再攻击它子树的最少花费
    	int ha=0,hb=0;
    	for(int i=head[x];i;i=e[i].next){
    		int v=e[i].to;
    		if(v==fa)continue;
    		dfs(v,x);
    		//如果A攻击了x,儿子i为根的子树的最小花费就是min(A下去攻击i,或者B攻上来到i)。
    		ha+=min(dp[v][0][0],dp[v][1][1]);
    		hb+=min(dp[v][1][0],dp[v][0][1]);
    		f[x][0]=min(f[x][0],f[v][0]);//f[i][0]:min(A先攻击i的某个子节点-不用A先攻击该子节点),就是最小的增加量。
    		f[x][1]=min(f[x][1],f[v][1]);
    	}
    	dp[x][0][0]=ha+a[x]/2;
    	dp[x][1][0]=hb+b[x]/2;
    
    	//x的儿子里选一个先攻击,就要加上f[x][0]+a[x]/2(半价攻击x)
    	//先攻击x,就要加上a[x](全价攻击x)
    	dp[x][0][1]=ha+min(f[x][0]+a[x]/2, a[x]);
    	dp[x][1][1]=hb+min(f[x][1]+b[x]/2, b[x]);
    	//如果选择不用A从下往上攻击x节点,我们肯定要选其它方案里花费最小的一种。所以取min。
    	f[x][0]=dp[x][0][1]-min(dp[x][0][0], dp[x][1][1]);
    	f[x][1]=dp[x][1][1]-min(dp[x][1][0], dp[x][0][1]);
    }
    int n;
    void init(){
    	cnt=0;
    	memset(head, 0,sizeof head);
    	memset(dp, 0, sizeof dp);
    	memset(f, inf, sizeof f);
    }
    void work(){
    	for(int i=1;i<=n;++i)
    		scanf("%d",a+i);
    	for(int i=1;i<=n;++i)
    		scanf("%d",b+i);
    	for(int i=1,x,y;i<n;++i)
    		scanf("%d%d",&x,&y),add(x,y),add(y,x);
    	dfs(1,0);
    		printf("%d
    ",min(dp[1][1][1], dp[1][0][1]));
    	}
    int main(){
    	while(~scanf("%d", &n)){
    		init();
    		work();
    	}
    }
    

    ps.这题四个月前补过一次,今天又不会了。花了好久才明白。主要是状态的设计和转移。我觉得我这种转移写法也许算是比较难理解和直接写出来的,我当时是参考了别的题解再改了改。

  • 相关阅读:
    jmeter使用
    docker 制作ssh镜像
    docker 制作自定义的nginx镜像
    docker部署sharding-proxy
    ftp相关
    关于GDAL打开hfa大文件的问题[转]
    C++实现类似反射模式
    C#下使用GDAL库
    全球DEM、遥感图像、矢量图像、GIS数据下载
    DEM数据及其他数据下载
  • 原文地址:https://www.cnblogs.com/flipped/p/HDU4340.html
Copyright © 2011-2022 走看看