LaTex公式
$$J_alpha(x)=sum_{m=0}^inftyfrac{(-1)^m}{m!Gamma(m+alpha+1)}{left({frac{x}{2}}
ight)}^{2m+alpha}$$
[ J_alpha(x)=sum_{m=0}^inftyfrac{(-1)^m}{m!Gamma(m+alpha+1)}{left({frac{x}{2}}
ight)}^{2m+alpha}
]
$$frac{a-1}{b-1} quad and quad {a+1over b+1}$$
[frac{a-1}{b-1} quad and quad {a+1over b+1}
]
$$sqrt{2} quad and quad sqrt[n]{3}$$
[sqrt{2} quad and quad sqrt[n]{3}
]
$$f(x)=sum_{k=0}^{n}frac{f^{(k)}{x_0}}{k!}{(x-x_0)^k}+{frac{f^{(n+1)}(xi)}{(n+1)!}}{(x-x_0)^{n+1}} ext{,Maclaurin公式}$$
[f(x)=sum_{k=0}^{n}frac{f^{(k)}{x_0}}{k!}{(x-x_0)^k}+{frac{f^{(n+1)}(xi)}{(n+1)!}}{(x-x_0)^{n+1}} ext{,Maclaurin公式}
]
$$f(x) = {{{a_0}} over 2} + sumlimits_{n = 1}^infty {({a_n}cos {nx} + {b_n}sin {nx})} s ext{, 傅里叶级数}$$
[f(x) = {{{a_0}} over 2} + sumlimits_{n = 1}^infty {({a_n}cos {nx} + {b_n}sin {nx})} s ext{, 傅里叶级数}
]
$$ e ^ { x } = 1 + frac { x } { 1 ! } + frac { x ^ { 2 } } { 2 ! } + frac { x ^ { 3 } } { 3 ! } + cdots , quad - infty < x < infty ext {,泰勒公式} $$
[e ^ { x } = 1 + frac { x } { 1 ! } + frac { x ^ { 2 } } { 2 ! } + frac { x ^ { 3 } } { 3 ! } + cdots , quad - infty < x < infty ext {,泰勒公式}
]
$$ iiint _ { Omega } left( frac { partial {P} } { partial {x} } + frac { partial {Q} } { partial {y} } + frac { partial {R} }{ partial {z} }
ight) mathrm { d } V = oint _ { partial Omega } ( P cos alpha + Q cos eta + R cos gamma ) mathrm{ d} S ext {, 高斯公式} $$
[iiint _ { Omega } left( frac { partial {P} } { partial {x} } + frac { partial {Q} } { partial {y} } + frac { partial {R} }{ partial {z} }
ight) mathrm { d } V = oint _ { partial Omega } ( P cos alpha + Q cos eta + R cos gamma ) mathrm{ d} S ext {, 高斯公式}
]