Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10481 Accepted Submission(s): 3853
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
用sum数组存前缀和,a【i.....j]=sum[j]-sum[i-1];max(a[1....j])=sum[j]-min(sum[i-1]) j-(i-1)<=k;
用单调栈维护最小的sum[i-1]即可;
#include<iostream> #include<algorithm> #include<cstring> using namespace std; int n,m;int a[100005],sum[200100],q[200100]; int start,endi,total;int res;int ans; void get() { int head=0,tail=0; ans=-100000000; for(int i=1;i<total;i++) { while(head<tail&&sum[q[tail-1]]>=sum[i-1])tail--; while(head<tail&&q[head]<i-m)head++; q[tail++]=i-1; if(sum[i]-sum[q[head]]>ans) { start=q[head]; endi=i; ans=sum[endi]-sum[start]; } } } int main() { int t;scanf("%d",&t); while(t--) { cin>>n>>m;sum[0]=0; for(int i=1;i<=n;i++) { cin>>a[i]; sum[i]=sum[i-1]+a[i]; } for(int i=1;i<m;i++) sum[n+i]=sum[n+i-1]+a[i]; total=n+m; get(); start++; if(start>n)start-=n; if(endi>n)endi-=n; cout<<ans<<" "<<start<<" "<<endi<<endl; } return 0; }