zoukankan      html  css  js  c++  java
  • 机器学习之调参

    导入数据:

    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import KFold 
    from sklearn.datasets import load_wine
    
    wine = load_wine()
    X = wine.data
    y = wine.target
    
    #splitting the data into train and test set
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state = 14)

    调参方法:

    1、网格搜索:

    from sklearn.model_selection import GridSearchCV
    
    knn = KNeighborsClassifier()
    grid_param = { 'n_neighbors' : list(range(2,11)) , 
                  'algorithm' : ['auto','ball_tree','kd_tree','brute'] }
                  
    grid = GridSearchCV(knn,grid_param,cv = 5)
    grid.fit(X_train,y_train)
    
    #best parameter combination
    grid.best_params_  #{'algorithm': 'auto', 'n_neighbors': 5}
    
    #Score achieved with best parameter combination
    grid.best_score_  #0.774
    
    #all combinations of hyperparameters
    grid.cv_results_['params']
    
    #average scores of cross-validation
    grid.cv_results_['mean_test_score']

    2、贝叶斯搜索:

    from skopt import BayesSearchCV
    
    import warnings
    warnings.filterwarnings("ignore")
    
    # parameter ranges are specified by one of below
    from skopt.space import Real, Categorical, Integer
    
    knn = KNeighborsClassifier()
    #defining hyper-parameter grid
    grid_param = { 'n_neighbors' : list(range(2,11)) , 
                  'algorithm' : ['auto','ball_tree','kd_tree','brute'] }
    
    #initializing Bayesian Search
    Bayes = BayesSearchCV(knn , grid_param , n_iter=30 , random_state=14)
    Bayes.fit(X_train,y_train)
    
    #best parameter combination
    Bayes.best_params_  #OrderedDict([('algorithm', 'ball_tree'), ('n_neighbors', 5)])
    
    #score achieved with best parameter combination
    Bayes.best_score_  #0.7741935483870968
    
    #all combinations of hyperparameters
    Bayes.cv_results_['params']
    
    #average scores of cross-validation
    Bayes.cv_results_['mean_test_score']

    网格搜索缺点:由于它尝试了超参数的每一个组合,并根据K折交叉验证得分选择了最佳组合,这使得GridsearchCV非常慢。

    贝叶斯搜索缺点:要在2维或3维的搜索空间中得到一个好的代理曲面需要十几个样本,增加搜索空间的维数需要更多的样本。

    除此之外还有传统手工搜索及随机搜索,未使用过,不推荐。

  • 相关阅读:
    如何通过 Vue-Cli3
    Vue简单了解
    年后跳槽如何准备?
    2016年1月-前端开发月刊
    前端如何正确选择offer,到底选哪个?
    前端应聘要准备些什么样子的作品?
    如何看待豪情的前端群的群规?
    前端工程师如何打发闲余时光?
    页面重构时的注意事项
    我想立刻辞职,然后闭关学习编程语言,我给自己3个月时间学习C语言!这样行的通吗
  • 原文地址:https://www.cnblogs.com/fm-yangon/p/14063701.html
Copyright © 2011-2022 走看看