zoukankan      html  css  js  c++  java
  • GUI编程小测试

    GUI编程小测试

    //使用GUI编程,结合几个布局方式写出下面的界面

    看到题目的时候应该有一个完整的构思后再动手,切勿仅凭大致想法

     


    public static void main(String[] args) {
             //总Frame
             Frame frame = new Frame();
             frame.setSize(400,300);//设置frame窗口的大小
             frame.setLocation(300,400);//设置窗口位于显示器的位置
             frame.setBackground(Color.BLACK);//设置背景颜色
             frame.setVisible(true);//设置窗口可见,窗口才会正确显示出来
             //frame.setResizable(false);
             //三种布局管理器:
             //     流式分布:BorderLayout()
             //     东西南北中:BorderLayout.WEST
             //     方格分布:GridLayout(2,1)
             frame.setLayout(new GridLayout(2,1));
     
             //4个面板,面板相当于一个容器的作用,用来往里面放东西(面板可以添加到另一个面板里面实现自由定义界面)
             Panel p1 = new Panel(new BorderLayout());
             Panel p2 = new Panel(new GridLayout(2,1));
             Panel p3 = new Panel(new BorderLayout());
             Panel p4 = new Panel(new GridLayout(2,2));
     
             p1.add(new Button("West-1"),BorderLayout.WEST);
             p1.add(new Button("East-1"),BorderLayout.EAST);
             p2.add(new Button("p2-1"));
             p2.add(new Button("p2-2"));
             p1.add(p2,BorderLayout.CENTER);
             p3.add(new Button("West-2"),BorderLayout.WEST);
             p3.add(new Button("East-2"),BorderLayout.EAST);
             for (int i = 0; i < 4; i++) {
                 p4.add(new Button("p4-i"));
            }
     //       p4.add(new Button("p4-1"));
     //       p4.add(new Button("p4-2"));
     //       p4.add(new Button("p4-3"));
     //       p4.add(new Button("p4-4"));
             p3.add(p4,BorderLayout.CENTER);
     
             frame.add(p1);
             frame.add(p3);
     
             //监听器,实现窗口关闭功能
             frame.addWindowListener(new WindowAdapter() {
                 @Override
                 public void windowClosing(WindowEvent e) {
                     System.exit(0);
                }
            });
     }

     

  • 相关阅读:
    洛谷P4206 [NOI2005]聪聪与可可(期望dp+最短路)
    bzoj2064: 分裂(状压dp)
    Centos7搭建ansible运维自动化工具
    Centos7自动式脚本搭建jumpserver
    TSP问题—Hopfield神经网络算法
    TSP问题—近似算法
    狭义相对论的数学推导
    线性规划实战—投资的收益和风险
    线性规划的算法分析
    一阶非齐次线性微分方程的算法
  • 原文地址:https://www.cnblogs.com/focuslife/p/13098535.html
Copyright © 2011-2022 走看看