zoukankan      html  css  js  c++  java
  • Maximum Subarray解题报告zz

    http://fisherlei.blogspot.com/2012/12/leetcode-maximum-subarray.html

    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
    For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
    the contiguous subarray [4,−1,2,1] has the largest sum = 6.
    More practice:
    If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
    » Solve this problem

    [解题思路]
    O(n)就是一维DP.
    假设A(0, i)区间存在k,使得[k, i]区间是以i结尾区间的最大值, 定义为Max[i], 在这里,当求取Max[i+1]时,
    Max[i+1] = Max[i] + A[i+1],  if (Max[i] + A[i+1] >0)
                    = 0, if(Max[i]+A[i+1] <0),如果和小于零,A[i+1]必为负数,没必要保留,舍弃掉
    然后从左往右扫描,求取Max数字的最大值即为所求。

    [Code]
    1:    int maxSubArray(int A[], int n) {  
    2:      // Start typing your C/C++ solution below  
    3:      // DO NOT write int main() function  
    4:      int sum = 0;  
    5:      int max = INT_MIN;  
    6:      for(int i =0; i < n ; i ++)  
    7:      {  
    8:        sum +=A[i];        
    9:        if(sum>max)  
    10:          max = sum;  
    11:        if(sum < 0)  
    12:          sum = 0;  
    13:      }  
    14:      return max;  
    15:    }  
    

    但是题目中要求,不要用这个O(n)解法,而是采用Divide & Conquer。这就暗示了,解法必然是二分。分析如下:

    假设数组A[left, right]存在最大值区间[i, j](i>=left & j<=right),以mid = (left + right)/2 分界,无非以下三种情况:

    subarray A[i,..j] is
    (1) Entirely in A[low,mid-1]
    (2) Entirely in A[mid+1,high]
    (3) Across mid
    对于(1) and (2),直接递归求解即可,对于(3),则需要以min为中心,向左及向右扫描求最大值,意味着在A[left, Mid]区间中找出A[i..mid], 而在A[mid+1, right]中找出A[mid+1..j],两者加和即为(3)的解。

    代码实现如下:
    1:    int maxSubArray(int A[], int n) {  
    2:      // Start typing your C/C++ solution below  
    3:      // DO NOT write int main() function  
    4:      int maxV = INT_MIN;  
    5:      return maxArray(A, 0, n-1, maxV);      
    6:    }  
    7:    int maxArray(int A[], int left, int right, int& maxV)  
    8:    {  
    9:      if(left>right)  
    10:        return INT_MIN;  
    11:      int mid = (left+right)/2;  
    12:      int lmax = maxArray(A, left, mid -1, maxV);  
    13:      int rmax = maxArray(A, mid + 1, right, maxV);  
    14:      maxV = max(maxV, lmax);  
    15:      maxV = max(maxV, rmax);  
    16:      int sum = 0, mlmax = 0;  
    17:      for(int i= mid -1; i>=left; i--)  
    18:      {  
    19:        sum += A[i];  
    20:        if(sum > mlmax)  
    21:          mlmax = sum;  
    22:      }  
    23:      sum = 0; int mrmax = 0;  
    24:      for(int i = mid +1; i<=right; i++)  
    25:      {  
    26:        sum += A[i];  
    27:        if(sum > mrmax)  
    28:          mrmax = sum;  
    29:      }  
    30:      maxV = max(maxV, mlmax + mrmax + A[mid]);  
    31:      return maxV;  
    32:    }  
    
     
    [注意]
    考虑到最大和仍然可能是负数,所以对于有些变量的初始化不能为0,要为INT_MIN
  • 相关阅读:
    日常小算法
    美化type="file"控件
    流文件_从网络中获取文件
    Kibana配置安装
    JDK安装
    Node.js安装windows环境
    RabbitMQ高可用
    RabbitMQ实例C#
    RabbitMQ基础命令rabbitmqctl
    RabbitMQ配置
  • 原文地址:https://www.cnblogs.com/forcheryl/p/3989401.html
Copyright © 2011-2022 走看看