zoukankan      html  css  js  c++  java
  • LeetCode-Maximal Rectangle [学以致用] ZZ

    http://www.cnblogs.com/lichen782/p/leetcode_maximal_rectangle.html

    题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

    leetcode的题目真是越来越经典了。比如这个题目,就是一道男默女泪的题。

    一般人拿到这个题目,除非做过类似的,很难一眼找出一个方法来,更别说找一个比较优化的方法了。

    首先一个难点就是,你怎么判断某个区域就是一个矩形呢?

    其次,以何种方式来遍历这个2D的matrix呢?

    一般来说,对这种“棋盘式”的题目,像什么Queen啦,象棋啦,数独啦,如果没有比较明显的遍历方式,可以采用一行一行地遍历。(好像废话哦。。。)

    然后,当遍历到(i, j)的时候,该做什么样的事情呢?想想,嗯,那我可不可以简单看看,以(i,j)为矩形左上角,能不能形成一个矩形,能不能形成多个矩形?那形成的矩形中,我们能不能找一个最大的呢?(有同学问,为毛你要以这个点为左上角,不为左下角,或者其他脚哩?因为我们打算从左到右,从上到下一行一行遍历嘛,这样就不会漏掉,说不定还能做一些优化)

    首先,如果(i, j)是0,那肯定没法是矩形了。

    如果是1,那么我们怎么找以它为左上角的矩形呢?呼唤画面感!

    。。。你TM在逗我?==b

    图中圈圈表示左上角的1,那么矩形的可能性是。。。太多啦,怎么数嘛!

    我们可以试探地从左上角的1所在的列开始,往下数数,然后呢,比如在第一行,例如是蓝色的那个矩形,我们看看在列上,它延伸了多远,这个面积是可以算出来的。

    然后继续,第二行,例如是那个红色的矩形,再看它延伸到多远,哦,我们知道,比第一行近一些,我们也可以用当前离第一行的行数,乘以延伸的距离,得到当前行表示的矩形面积。

    但是到了第一个虚线的地方,它远远超过了上面的其他所有行延伸的距离了,注意它的上方都是空心的哦,所以,我们遇到这种情况,计算当前行和左上角1围成的面积的时候,只能取所有前面最小的延伸距离乘以当前离第一行的行数。其实,这对所有情况都是这样的,是吧?于是,我们不是就有方法遍历这些所有的矩形了嘛。

    代码如下:

    复制代码
     1     /**
     2      * 以给出的坐标作为左上角,计算其中的最大矩形面积
     3      * @param matrix
     4      * @param row 给出坐标的行
     5      * @param col 给出坐标的列
     6      * @return 返回最大矩形的面积
     7      */
     8     private int maxRectangle(char[][] matrix, int row, int col) {
     9         int minWidth = Integer.MAX_VALUE;
    10         int maxArea = 0;
    11         for (int i = row; i < matrix.length && matrix[i][col] == '1'; i++) {
    12             int width = 0;
    13             while (col + width < matrix[row].length
    14                     && matrix[i][col + width] == '1') {
    15                 width++;
    16             }
    17             if (width < minWidth) {// 如果当前宽度小于了以前的最小宽度,更新它,为下面的矩形计算做准备
    18                 minWidth = width;
    19             }
    20             int area = minWidth * (i - row + 1);
    21             if (area > maxArea)
    22                 maxArea = area;
    23         }
    24         return maxArea;
    25     }
    复制代码

    这样,我们再对每个点都调用一下上面的这个方法,不是就能求出最大面积了么。

    解法一:

    复制代码
    public int maximalRectangle(char[][] matrix) {
            // Start typing your Java solution below
            // DO NOT write main() function
            int m = matrix.length;
            int n = m == 0 ? 0 : matrix[0].length;
            int maxArea = 0;
            for(int i = 0; i < m; i++){//row
                for(int j = 0; j < n; j++){//col
                    if(matrix[i][j] == '1'){
                        int area = maxRectangle(matrix, i, j);
                        if(area > maxArea) maxArea = area;
                    }
                }
            }
            return maxArea;
         }
    复制代码

    这个需要O(n3),所以没有通过大集合的测试。

    leetcode的讨论组给出了一个比较难理解的方法,这里就不采用了。

    说说第三个方法。前一个笔记,我们讨论了柱状图的最大矩形面积,那可以O(n)的,学以致用呀!btw,leetcode的这两题也是挨一块儿的,用心良苦。。。。

    如果我们把每一行看成x坐标,那高度就是从那一行开始往上数的1的个数。带入我们的maxAreaInHist方法,在O(n2)时间内就可以求出每一行形成的“柱状图”的最大矩形面积了。它们之中最大的,就是我们要的答案。

    代码如下:

     1 public int maximalRectangle2(char[][] matrix) {
     2         int m = matrix.length;
     3         int n = m == 0 ? 0 : matrix[0].length;
     4         int[][] height = new int[m][n + 1];
     5         //actually we know that height can just be a int[n+1], 
     6         //however, in that case, we have to write the 2 parts together in row traverse,
     7         //which, leetcode just doesn't make you pass big set
     8         //所以啊,leetcode是喜欢分开写循环的,即使时间复杂度一样,即使可以节约空间
     9         int maxArea = 0;
    10         for(int i = 0; i < m; i++){
    11             for(int j = 0; j < n; j++) {
    12                 if(matrix[i][j] == '0'){
    13                     height[i][j] = 0;
    14                 }else {
    15                     height[i][j] = i == 0 ? 1 : height[i - 1][j] + 1;
    16                 }
    17             }
    18         }
    19         for(int i = 0; i < m; i++){
    20             int area = maxAreaInHist(height[i]);
    21             if(area > maxArea){
    22                 maxArea = area;
    23             }
    24         }
    25         return maxArea;
    26      }
    27      
    28      private int maxAreaInHist(int[] height){
    29          Stack<Integer> stack = new Stack<Integer>();
    30          int i = 0;
    31          int maxArea = 0;
    32          while(i < height.length){
    33              if(stack.isEmpty() || height[stack.peek()] <= height[i]){
    34                  stack.push(i++);
    35              }else {
    36                  int t = stack.pop();
    37                  maxArea = Math.max(maxArea, height[t] * (stack.isEmpty() ? i : i - stack.peek() - 1));
    38              }
    39          }
    40          return maxArea;
    41      }

    这里有一个和leetcode相关的细节。就是本来在计算height数组的时候,我们没有必要分配成代码中的那个样子,一维就可以了,然后在遍历每一行的时候计算当前行的height数组,然后再计算maxArea。这种情况下还是过不了大集合,所以不得不为每一行都保存一个height,先期计算该二维数组。

    总结:

    1. 学到的新知识要用;

    2. 画面感和逻辑分析都很重要,不可偏非。

  • 相关阅读:
    python(打印九九乘法表,三角形)
    Python (内置函数)
    python (生成器,生成推导式)
    python (函数名,闭包和迭代器)
    python (函数命名空间和作用域)
    python (函数)
    python (文件)
    python (集合和深浅拷贝)
    jquery 学习(四)
    JavaScript练习
  • 原文地址:https://www.cnblogs.com/forcheryl/p/4022574.html
Copyright © 2011-2022 走看看