典型例题
1.
证明:
由题可知(A(-2, 0))
设(D(x_0, y_0) (x_0 eq pm 2)),则(E(-x_0, -y_0)),且(frac{x_0^2}{4} + y_0^2 = 1)
则由题有(AD: y = frac{y_0}{x_0 + 2} (x + 2) Rightarrow M(0, frac{2y_0}{x_0 + 2}))
同理(AE: y = frac{y_0}{x_0 - 2} (x + 2) Rightarrow M(0, frac{2y_0}{x_0 - 2}))
设以(MN)为直径的圆与(x)轴交于(P(x', 0))和(Q(-x', 0)),不妨令(x' > 0)
那么(vec{PM} = (-x', frac{2y_0}{x_0 + 2})),(vec{PN} = (-x', frac{2y_0}{x_0 - 2}))
(vec{PM} cdot vec{PN} = x'^2 + frac{4y_0^2}{x_0^2 - 4} = 0)
代入(frac{x_0^2}{4} + y_0^2 = 1),整理可得(x' = 1) (Rightarrow)(lvert PQ vert = 2)
即以(MN)为直径的圆被(x)轴截的的弦长恒为定值(2)
(lacksquare)
2.
解:
设(M(x_1, y_1)),(N(x_2, y_2))
I
若(k = 0)
由题易知(m in (-sqrt{3}, sqrt{3}))
II
若(k
eq 0) (Rightarrow l: y = -frac{1}{k} x - frac{1}{2})
将(y = kx + m)代入椭圆方程,整理得
其中
由韦达定理,
设(MN)的中点为(P),则(P(-frac{4km}{4k^2 + 3}, frac{3m}{4k^2 + 3})),故有
整理得(4k^2 + 3 = 2m) (Rightarrow) (2m > m^2) (Rightarrow) (0 < m < 2)
上述方程又可化为(2m - 3 = 4k^2 > 0) (Rightarrow) (m > frac{3}{2}) (Rightarrow) (frac{3}{2} < m < 2)
此时,若(y = kx + m)过左顶点 (Rightarrow) (m = 2k) (Rightarrow) ((2k^2 - 1)^2 = -2) (Rightarrow) 无解
故(y = kx + m)不过左顶点,由对称性可得其不过右顶点
即此时(m in (frac{3}{2}, 2))
综上所述,(m in (-sqrt{3}, 2))
课堂练习
1.
解:
由题可知(P(0, 2) Rightarrow M(0, 1))
设(A(x_1, y_1)),(B(x_2, y_2))
I
若(l)的斜率存在
设(l: y = kx + 1),代入椭圆方程,整理得
其中
由几何关系易知
由韦达定理,
代入,整理得(k = frac{3}{8}) (Rightarrow) (l: 3x - 8y + 8 = 0)
II
若(l)斜率不存在
此时显然满足(Rightarrow l: x = 0)
综上所述,(l: 3x - 8y + 8 = 0)或(l: x = 0)
2.
证明:
由几何关系易知(PA perp PB)
I
若(PA perp x)轴
此时(PA: x = 3)或(PA: x = -3) (Rightarrow) (PB: y = 2)或(PB: y = -2)
易知(PB)与(C)相切
II
若(PA perp y)轴
由I
易知此时(PB)与(C)相切
III
若(PA)与(x)轴和(y)均不垂直
设(P(x_0, y_0)),(PA: y - y_0 = k(x - x_0)),则(PB: y - y_0 = -frac{1}{k} (x - x_0))
将(PA)代入(C),整理得
(PA)与(C)相切(Rightarrow)(Delta_1 = [18k(y_0 - kx_0)]^2 - 4(9k^2 + 4)[9(y_0 - kx_0)^2 - 36] = 0) (Rightarrow) ((x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4 = 0)
将(PB)代入(C),整理求得(Delta_2 = frac{x_0^2 - 9}{k^2} + frac{2x_0y_0}{k} + y_0^2 - 4)
又(x_0^2 + y_0^2 = 13) (Rightarrow) (Delta_2 = -frac{144[(x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4]}{k^2} = 0)
故此时(PB)与(C)相切
综上所述,直线(PB)与椭圆(C)相切
(lacksquare)
课后作业
1.
解:
若(Delta ABC)为正三角形,则(AB perp OC)且(sqrt{3} lvert OA vert = lvert OC vert)
由几何关系易知(AB)的斜率存在且不为(0)
故可设(AB: y = kx),则(OC: y = -frac{1}{k} x)
将(AB)代入(Gamma),整理可得
故(lvert OA vert = sqrt{x^2 + y^2} = sqrt{frac{30(k^2 + 1)}{5k^2 + 3}}),同理(lvert OC vert = sqrt{frac{30(k^2 + 1)}{3k^2 + 5}})
又(sqrt{3} lvert OA vert = lvert OC vert)
代入整理得(k^2 = -3) (Rightarrow) 无实数解
故(Delta ABC)不可能为正三角形
2.
解:
由题,(C(1, 0)),(E(-m, n))
则(CD: y = frac{n}{m - 1} (x - 1)) (Rightarrow) (M(0, frac{n}{1 - m}));(CE: y = -frac{n}{m + 1} (x - 1)) (Rightarrow) (N(0, frac{n}{1 + m}))
设(Q(t, 0)),则( an angle OQM = lvert frac{n}{(m - 1)t} vert),( an angle ONQ = lvert frac{(m + 1)t}{n} vert)
则由题有
故存在(Q),且(Q(sqrt{2}, 0))或(Q(-sqrt{2}, 0))
3.
解:
由题可知,(A(1, 0)),(AP)的斜率存在且不为(0)
故可设(AP: my = x - 1),其中(m eq 0),代入(l)得(P(-1, -frac{2}{m})),(Q(-1, frac{2}{m}))
将(AP)代入椭圆方程,解得(y = 0)或(-frac{6m}{3m^2 + 4})
(B)异于点(A)(Rightarrow)(B(frac{4 - 3m^2}{3m^2 + 4}, -frac{6m}{3m^2 + 4}))
故(BQ: frac{8}{3m^2 + 4} (y - frac{2}{m}) = -frac{12m^2 + 8}{m(3m^2 + 4)} (x + 1)) (Rightarrow) (D(frac{2 - 3m^2}{3m^2 + 2}, 0))
(Rightarrow lvert AD vert = frac{6m^2}{3m^2 + 2})
故(S_{Delta APD} = frac{6m^2}{3m^2 + 2} cdot frac{2}{lvert m vert} div 2 = frac{sqrt{6}}{2})
整理得(3 lvert m vert ^2 - 2 sqrt{6} lvert m vert + 2 = 0) (Rightarrow) (lvert m vert = frac{sqrt{6}}{3}) (Rightarrow) (m = pm frac{sqrt{6}}{3})
故(AP: 3x + sqrt{6} y - 3 = 0)或(3x - sqrt{6} y - 3 = 0)