zoukankan      html  css  js  c++  java
  • $20200203$的数学作业

    典型例题

    1.

    证明:

    由题可知(A(-2, 0))

    (D(x_0, y_0) (x_0 eq pm 2)),则(E(-x_0, -y_0)),且(frac{x_0^2}{4} + y_0^2 = 1)

    则由题有(AD: y = frac{y_0}{x_0 + 2} (x + 2) Rightarrow M(0, frac{2y_0}{x_0 + 2}))

    同理(AE: y = frac{y_0}{x_0 - 2} (x + 2) Rightarrow M(0, frac{2y_0}{x_0 - 2}))

    设以(MN)为直径的圆与(x)轴交于(P(x', 0))(Q(-x', 0)),不妨令(x' > 0)

    那么(vec{PM} = (-x', frac{2y_0}{x_0 + 2}))(vec{PN} = (-x', frac{2y_0}{x_0 - 2}))

    (vec{PM} cdot vec{PN} = x'^2 + frac{4y_0^2}{x_0^2 - 4} = 0)

    代入(frac{x_0^2}{4} + y_0^2 = 1),整理可得(x' = 1) (Rightarrow)(lvert PQ vert = 2)

    即以(MN)为直径的圆被(x)轴截的的弦长恒为定值(2)

    (lacksquare)


    2.

    解:

    (M(x_1, y_1))(N(x_2, y_2))

    I(k = 0)

    由题易知(m in (-sqrt{3}, sqrt{3}))

    II(k eq 0) (Rightarrow l: y = -frac{1}{k} x - frac{1}{2})

    (y = kx + m)代入椭圆方程,整理得

    [(4k^2 + 3)x^2 + 8kmx + 4m^2 - 12 = 0 ]

    其中

    [egin{aligned} Delta & = (8km)^2 - 4(4k^2 + 3)(4m^2 - 12) \ & = 48(4k^2 - m^2 + 3) > 0 Rightarrow 4k^2 + 3 > m^2 end{aligned} ]

    由韦达定理,

    [egin{cases} egin{aligned} & x_1 + x_2 = -frac{8km}{4k^2 + 3} \ & x_1x_2 = frac{4m^2 - 12}{4k^2 + 3} end{aligned} end{cases} ]

    (MN)的中点为(P),则(P(-frac{4km}{4k^2 + 3}, frac{3m}{4k^2 + 3})),故有

    [frac{3m}{4k^2 + 3} = frac{4m}{4k^2 + 3} - frac{1}{2} ]

    整理得(4k^2 + 3 = 2m) (Rightarrow) (2m > m^2) (Rightarrow) (0 < m < 2)

    上述方程又可化为(2m - 3 = 4k^2 > 0) (Rightarrow) (m > frac{3}{2}) (Rightarrow) (frac{3}{2} < m < 2)

    此时,若(y = kx + m)过左顶点 (Rightarrow) (m = 2k) (Rightarrow) ((2k^2 - 1)^2 = -2) (Rightarrow) 无解

    (y = kx + m)不过左顶点,由对称性可得其不过右顶点

    即此时(m in (frac{3}{2}, 2))

    综上所述,(m in (-sqrt{3}, 2))

    课堂练习

    1.

    解:

    由题可知(P(0, 2) Rightarrow M(0, 1))

    (A(x_1, y_1))(B(x_2, y_2))

    I(l)的斜率存在

    (l: y = kx + 1),代入椭圆方程,整理得

    [(2k^2 + 1)x^2 + 4kx - 6 = 0 ]

    其中

    [egin{aligned} Delta & = (4k)^2 - 4(2k^2 + 1) cdot (-6) \ & = 8(8k^2 + 3) > 0 end{aligned} ]

    由几何关系易知

    [egin{aligned} k_{AC} + k_{BC} & = 0 \ frac{y_1}{x_1 + 3} + frac{y_2}{x_2 + 3} & = 0 \ 2kx_1x_2 + (3k + 1)(x_1 + x_2) + 6 = 0 end{aligned} ]

    由韦达定理,

    [egin{cases} egin{aligned} & x_1 + x_2 = -frac{4k}{2k^2 + 1} \ & x_1x_2 = -frac{6}{2k^2 + 1} end{aligned} end{cases} ]

    代入,整理得(k = frac{3}{8}) (Rightarrow) (l: 3x - 8y + 8 = 0)

    II(l)斜率不存在

    此时显然满足(Rightarrow l: x = 0)

    综上所述,(l: 3x - 8y + 8 = 0)(l: x = 0)


    2.

    证明:

    由几何关系易知(PA perp PB)

    I(PA perp x)

    此时(PA: x = 3)(PA: x = -3) (Rightarrow) (PB: y = 2)(PB: y = -2)

    易知(PB)(C)相切

    II(PA perp y)

    I易知此时(PB)(C)相切

    III(PA)(x)轴和(y)均不垂直

    (P(x_0, y_0))(PA: y - y_0 = k(x - x_0)),则(PB: y - y_0 = -frac{1}{k} (x - x_0))

    (PA)代入(C),整理得

    [(9k^2 + 4)x^2 + 18k(y_0 - kx_0)x + 9(y_0 - kx_0)^2 - 36 = 0 ]

    (PA)(C)相切(Rightarrow)(Delta_1 = [18k(y_0 - kx_0)]^2 - 4(9k^2 + 4)[9(y_0 - kx_0)^2 - 36] = 0) (Rightarrow) ((x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4 = 0)

    (PB)代入(C),整理求得(Delta_2 = frac{x_0^2 - 9}{k^2} + frac{2x_0y_0}{k} + y_0^2 - 4)

    (x_0^2 + y_0^2 = 13) (Rightarrow) (Delta_2 = -frac{144[(x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4]}{k^2} = 0)

    故此时(PB)(C)相切

    综上所述,直线(PB)与椭圆(C)相切

    (lacksquare)

    课后作业

    1.

    解:

    (Delta ABC)为正三角形,则(AB perp OC)(sqrt{3} lvert OA vert = lvert OC vert)

    由几何关系易知(AB)的斜率存在且不为(0)

    故可设(AB: y = kx),则(OC: y = -frac{1}{k} x)

    (AB)代入(Gamma),整理可得

    [egin{cases} egin{aligned} & x^2 = frac{30}{5k^2 + 3} \ & y^2 = frac{30k^2}{5k^2 + 3} end{aligned} end{cases} ]

    (lvert OA vert = sqrt{x^2 + y^2} = sqrt{frac{30(k^2 + 1)}{5k^2 + 3}}),同理(lvert OC vert = sqrt{frac{30(k^2 + 1)}{3k^2 + 5}})

    (sqrt{3} lvert OA vert = lvert OC vert)

    代入整理得(k^2 = -3) (Rightarrow) 无实数解

    (Delta ABC)不可能为正三角形


    2.

    解:

    由题,(C(1, 0))(E(-m, n))

    (CD: y = frac{n}{m - 1} (x - 1)) (Rightarrow) (M(0, frac{n}{1 - m}))(CE: y = -frac{n}{m + 1} (x - 1)) (Rightarrow) (N(0, frac{n}{1 + m}))

    (Q(t, 0)),则( an angle OQM = lvert frac{n}{(m - 1)t} vert)( an angle ONQ = lvert frac{(m + 1)t}{n} vert)

    则由题有

    [egin{aligned} lvert frac{n}{(1 - m)t} vert & = lvert frac{(1 + m)t}{n} vert \ t^2 & = frac{n ^ 2}{1 - m^2} = frac{n^2}{frac{n^2}{2}} = 2 \ t & = pm sqrt{2} end{aligned} ]

    故存在(Q),且(Q(sqrt{2}, 0))(Q(-sqrt{2}, 0))


    3.

    解:

    由题可知,(A(1, 0))(AP)的斜率存在且不为(0)

    故可设(AP: my = x - 1),其中(m eq 0),代入(l)(P(-1, -frac{2}{m}))(Q(-1, frac{2}{m}))

    (AP)代入椭圆方程,解得(y = 0)(-frac{6m}{3m^2 + 4})

    (B)异于点(A)(Rightarrow)(B(frac{4 - 3m^2}{3m^2 + 4}, -frac{6m}{3m^2 + 4}))

    (BQ: frac{8}{3m^2 + 4} (y - frac{2}{m}) = -frac{12m^2 + 8}{m(3m^2 + 4)} (x + 1)) (Rightarrow) (D(frac{2 - 3m^2}{3m^2 + 2}, 0))

    (Rightarrow lvert AD vert = frac{6m^2}{3m^2 + 2})

    (S_{Delta APD} = frac{6m^2}{3m^2 + 2} cdot frac{2}{lvert m vert} div 2 = frac{sqrt{6}}{2})

    整理得(3 lvert m vert ^2 - 2 sqrt{6} lvert m vert + 2 = 0) (Rightarrow) (lvert m vert = frac{sqrt{6}}{3}) (Rightarrow) (m = pm frac{sqrt{6}}{3})

    (AP: 3x + sqrt{6} y - 3 = 0)(3x - sqrt{6} y - 3 = 0)

  • 相关阅读:
    【成功案例】智能企业的可持续转型
    【成功案例】三菱重工
    【成功案例】都乐(Dole)
    【成功案例】佳能
    【成功案例】DHL将美洲汇聚在一起
    【成功案例】Bantotal
    【成功案例】得益于GeneXus,毕马威墨西哥在员工培训方面节省了95%的费用
    GeneXus低码工具为美国最大的大学图书销售商之一解决了五个问题
    双均线系统
    价量时空交易系统
  • 原文地址:https://www.cnblogs.com/forth/p/12255246.html
Copyright © 2011-2022 走看看