$Description$
$Sol$
分别处理$x$坐标和$y$坐标.$y$坐标显然很好处理,就是排个序然后取中位数就好了.$x$没有$y$那么直接叭.所以我首先写了个大暴力$ovo$,居然过了$AcWing$(太水了).当然过不了$Poj$.所以再观察一下,发现对于枚举的一个$x$作为一条平行线的左端点的$x$值,排序后,累计答案为$as+=abs(x[i]-(x+i-1))$,整理一下,$as+=abs((x[i]-i+1)-x)$,发现被减数是一定的,于是现在和$y$的情况是一样的辣.$over.$
$Code$
//#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<algorithm> #define il inline #define Rg register #define go(i,a,b) for(Rg int i=a;i<=b;++i) #define yes(i,a,b) for(Rg int i=a;i>=b;--i) #define mem(a,b) memset(a,b,sizeof(a)) #define ll long long #define db double #define inf (1<<30) using namespace std; il int read() { Rg int x=0,y=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();} while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();} return x*y; } const int N=10010; int n,x[N],y[N]; ll as=inf; int main() { n=read();go(i,1,n)x[i]=read(),y[i]=read(); sort(x+1,x+n+1);sort(y+1,y+n+1); go(i,x[1]-n+1,x[n]) { ll qvq=0; go(j,1,n)qvq+=abs(x[j]-(i+j-1)); as=min(as,qvq); } go(i,1,n)as+=abs(y[i]-y[n/2+1]); printf("%lld ",as); return 0; }
//#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<algorithm> #define il inline #define Rg register #define go(i,a,b) for(Rg int i=a;i<=b;++i) #define yes(i,a,b) for(Rg int i=a;i>=b;--i) #define mem(a,b) memset(a,b,sizeof(a)) #define ll long long #define db double #define inf (1<<30) using namespace std; il int read() { Rg int x=0,y=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();} while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();} return x*y; } const int N=10010; int n,x[N],y[N]; ll as; int main() { n=read();go(i,1,n)x[i]=read(),y[i]=read(); sort(x+1,x+n+1);sort(y+1,y+n+1); go(i,1,n)x[i]-=i;sort(x+1,x+n+1); go(i,1,n)as+=abs(y[i]-y[n/2+1])+abs(x[i]-x[n/2+1]); printf("%lld ",as); return 0; }