zoukankan      html  css  js  c++  java
  • IO复用,AIO,BIO,NIO,同步,异步,阻塞和非阻塞 区别

    一、什么是socket?什么是I/O操作?

    我们都知道unix(like)世界里,一切皆文件,而文件是什么呢?文件就是一串二进制流而已,不管socket,还是FIFO、管道、终端,对我们来说,一切都是文件,一切都是流。在信息 交换的过程中,我们都是对这些流进行数据的收发操作,简称为I/O操作(input and output),往流中读出数据,系统调用read,写入数据,系统调用write。不过话说回来了 ,计算机里有这么多的流,我怎么知道要操作哪个流呢?对,就是文件描述符,即通常所说的fd,一个fd就是一个整数,所以,对这个整数的操作,就是对这个文件(流)的操作。我们创建一个socket,通过系统调用会返回一个文件描述符,那么剩下对socket的操作就会转化为对这个描述符的操作。不能不说这又是一种分层和抽象的思想

    二、同步异步,阻塞非阻塞区别联系

        实际上同步与异步是针对应用程序与内核的交互而言的。同步过程中进程触发IO操作并等待(也就是我们说的阻塞)或者轮询的去查看IO操作(也就是我们说的非阻塞)是否完成。 异步过程中进程触发IO操作以后,直接返回,做自己的事情,IO交给内核来处理,完成后内核通知进程IO完成。

    同步和异步针对应用程序来,关注的是程序中间的协作关系;阻塞与非阻塞更关注的是单个进程的执行状态。

    同步有阻塞和非阻塞之分,异步没有,它一定是非阻塞的。

    阻塞、非阻塞、多路IO复用,都是同步IO,异步必定是非阻塞的,所以不存在异步阻塞和异步非阻塞的说法。真正的异步IO需要CPU的深度参与。换句话说,只有用户线程在操作IO的时候根本不去考虑IO的执行全部都交给CPU去完成,而自己只等待一个完成信号的时候,才是真正的异步IO。所以,拉一个子线程去轮询、去死循环,或者使用select、poll、epool,都不是异步。

    同步:执行一个操作之后,进程触发IO操作并等待(也就是我们说的阻塞)或者轮询的去查看IO操作(也就是我们说的非阻塞)是否完成,等待结果,然后才继续执行后续的操作。

    异步:执行一个操作后,可以去执行其他的操作,然后等待通知再回来执行刚才没执行完的操作。

    阻塞:进程给CPU传达一个任务之后,一直等待CPU处理完成,然后才执行后面的操作。

    非阻塞:进程给CPU传达任我后,继续处理后续的操作,隔断时间再来询问之前的操作是否完成。这样的过程其实也叫轮询。

    我认为, 同步与异步的根本区别是:

    (1) 这是 BIO,同步阻塞的模型,下面也有,

    由上面的图可以看出,IO读分为两部分,(a)是数据通过网关到达内核,内核准备好数据,(b)数据从内核缓存写入用户缓存。

    同步:不管是BIO,NIO,还是IO多路复用,第二步数据从内核缓存写入用户缓存一定是由 用户线程自行读取数据,处理数据。

    异步:第二步数据是内核写入的,并放在了用户线程指定的缓存区,写入完毕后通知用户线程。

     

    二、阻塞?

    什么是程序的阻塞呢?想象这种情形,比如你等快递,但快递一直没来,你会怎么做?有两种方式:

    • 快递没来,我可以先去睡觉,然后快递来了给我打电话叫我去取就行了。
    • 快递没来,我就不停的给快递打电话说:擦,怎么还没来,给老子快点,直到快递来。

    很显然,你无法忍受第二种方式,不仅耽搁自己的时间,也会让快递很想打你。
    而在计算机世界,这两种情形就对应阻塞和非阻塞忙轮询。

    • 非阻塞忙轮询:数据没来,进程就不停的去检测数据,直到数据来。
    • 阻塞:数据没来,啥都不做,直到数据来了,才进行下一步的处理。

    先说说阻塞,因为一个线程只能处理一个套接字的I/O事件,如果想同时处理多个,可以利用非阻塞忙轮询的方式,伪代码如下: 

    while true  
    {  
        for i in stream[]  
        {  
            if i has data  
            read until unavailable  
        }  
    }  
    

    我们只要把所有流从头到尾查询一遍,就可以处理多个流了,但这样做很不好,因为如果所有的流都没有I/O事件,白白浪费CPU时间片。正如有一位科学家所说,计算机所有的问题都可以增加一个中间层来解决,同样,为了避免这里cpu的空转,我们不让这个线程亲自去检查流中是否有事件,而是引进了一个代理(一开始是select,后来是poll),这个代理很牛,它可以同时观察许多流的I/O事件,如果没有事件,代理就阻塞,线程就不会挨个挨个去轮询了,伪代码如下:

    while true  
    {  
        select(streams[]) //这一步死在这里,知道有一个流有I/O事件时,才往下执行  
        for i in streams[]  
        {  
            if i has data  
            read until unavailable  
        }  
    }  
    

    但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,却并不知道是哪那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。所以select具有O(n)的无差别轮询复杂度,同时处理的流越多,无差别轮询时间就越长。

    epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll会把哪个流发生了怎样的I/O事件通知我们。所以我们说epoll实际上是事件驱动(每个事件关联上fd)的,此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1))伪代码如下:

    while true  
    {  
        active_stream[] = epoll_wait(epollfd)  
        for i in active_stream[]  
        {  
            read or write till  
        }  
    }  
    

    可以看到,select和epoll最大的区别就是:select只是告诉你一定数目的流有事件了,至于哪个流有事件,还得你一个一个地去轮询,而epoll会把发生的事件告诉你,通过发生的事件,就自然而然定位到哪个流了。不能不说epoll跟select相比,是质的飞跃,我觉得这也是一种牺牲空间,换取时间的思想,毕竟现在硬件越来越便宜了。

    三、I/O多路复用

    好了,我们讲了这么多,再来总结一下,到底什么是I/O多路复用。
    先讲一下I/O模型:
    首先,输入操作一般包含两个步骤:

    1. 等待数据准备好(waiting for data to be ready)。对于一个套接口上的操作,这一步骤关系到数据从网络到达,并将其复制到内核的某个缓冲区。
    2. 将数据从内核缓冲区复制到进程缓冲区(copying the data from the kernel to the process)。

    其次了解一下常用的3种I/O模型:

    1、阻塞I/O模型(BIO)

    最广泛的模型是阻塞I/O模型,默认情况下,所有套接口都是阻塞的。 进程调用recvfrom系统调用,整个过程是阻塞的,直到数据复制到进程缓冲区时才返回(当然,系统调用被中断也会返回)。

    2、非阻塞I/O模型(NIO)

    当我们把一个套接口设置为非阻塞时,就是在告诉内核,当请求的I/O操作无法完成时,不要将进程睡眠,而是返回一个错误。当数据没有准备好时,内核立即返回EWOULDBLOCK错误,第四次调用系统调用时,数据已经存在,这时将数据复制到进程缓冲区中。这其中有一个操作时轮询(polling)。

    3、I/O复用模型

    此模型用到select和poll函数,这两个函数也会使进程阻塞,select先阻塞,有活动套接字才返回,但是和阻塞I/O不同的是,这两个函数可以同时阻塞多个I/O操作,而且可以同时对多个读操作,多个写操作的I/O函数进行检测,直到有数据可读或可写(就是监听多个socket)。select被调用后,进程会被阻塞,内核监视所有select负责的socket,当有任何一个socket的数据准备好了,select就会返回套接字可读,我们就可以调用recvfrom处理数据。
    正因为阻塞I/O只能阻塞一个I/O操作,而I/O复用模型能够阻塞多个I/O操作,所以才叫做多路复用。

    4、信号驱动I/O模型(signal driven I/O, SIGIO)

      首先我们允许套接口进行信号驱动I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据。当数据报准备好读取时,内核就为该进程产生一个SIGIO信号。我们随后既可以在信号处理函数中调用recvfrom读取数据报,并通知主循环数据已准备好待处理,也可以立即通知主循环,让它来读取数据报。无论如何处理SIGIO信号,这种模型的优势在于等待数据报到达(第一阶段)期间,进程可以继续执行,不被阻塞。免去了select的阻塞与轮询,当有活跃套接字时,由注册的handler处理。


    5、异步I/O模型(AIO, asynchronous I/O)

      进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

      这个模型工作机制是:告诉内核启动某个操作,并让内核在整个操作(包括第二阶段,即将数据从内核拷贝到进程缓冲区中)完成后通知我们。

    这种模型和前一种模型区别在于:信号驱动I/O是由内核通知我们何时可以启动一个I/O操作,而异步I/O模型是由内核通知我们I/O操作何时完成。

     
     

    高性能IO模型浅析 

    服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:

    (1)同步阻塞IO(Blocking IO):即传统的IO模型。

    (2)同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的NIO并非Java的NIO(New IO)库。

    (3)IO多路复用(IO Multiplexing):即经典的Reactor设计模式,Java中的Selector和Linux中的epoll都是这种模型。

    (4)异步IO(Asynchronous IO):即经典的Proactor设计模式,也称为异步非阻塞IO。 

    为了方便描述,我们统一使用IO的读操作作为示例。

    一、同步阻塞IO

    同步阻塞IO模型是最简单的IO模型,用户线程在内核进行IO操作时被阻塞。

    图1 同步阻塞IO

    如图1所示,用户线程通过系统调用read发起IO读操作,由用户空间转到内核空间。内核等到数据包到达后,然后将接收的数据拷贝到用户空间,完成read操作。

    用户线程使用同步阻塞IO模型的伪代码描述为:

    {
    
    read(socket, buffer);
    
    process(buffer);
    
    }
    

    即用户需要等待read将socket中的数据读取到buffer后,才继续处理接收的数据。整个IO请求的过程中,用户线程是被阻塞的,这导致用户在发起IO请求时,不能做任何事情,对CPU的资源利用率不够。

    二、同步非阻塞IO

    同步非阻塞IO是在同步阻塞IO的基础上,将socket设置为NONBLOCK。这样做用户线程可以在发起IO请求后可以立即返回。

     

    图2 同步非阻塞IO

    如图2所示,由于socket是非阻塞的方式,因此用户线程发起IO请求时立即返回。但并未读取到任何数据,用户线程需要不断地发起IO请求,直到数据到达后,才真正读取到数据,继续执行。

    用户线程使用同步非阻塞IO模型的伪代码描述为:

    {
    
    while(read(socket, buffer) != SUCCESS)
    
    ;
    
    process(buffer);
    
    }
    

    即用户需要不断地调用read,尝试读取socket中的数据,直到读取成功后,才继续处理接收的数据。整个IO请求的过程中,虽然用户线程每次发起IO请求后可以立即返回,但是为了等到数据,仍需要不断地轮询、重复请求,消耗了大量的CPU的资源。一般很少直接使用这种模型,而是在其他IO模型中使用非阻塞IO这一特性。

    三、IO多路复用

    IO多路复用模型是建立在内核提供的多路分离函数select基础之上的,使用select函数可以避免同步非阻塞IO模型中轮询等待的问题。

    图3 多路分离函数select

    如图3所示,用户首先将需要进行IO操作的socket添加到select中,然后阻塞等待select系统调用返回。当数据到达时,socket被激活,select函数返回。用户线程正式发起read请求,读取数据并继续执行。

    从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。

    用户线程使用select函数的伪代码描述为:

    {
    
    select(socket);
    
    while(1) {
    
    sockets = select();
    
    for(socket in sockets) {
    
    if(can_read(socket)) {
    
    read(socket, buffer);
    
    process(buffer);
    
    }
    
    }
    
    }
    
    }
    

    其中while循环前将socket添加到select监视中,然后在while内一直调用select获取被激活的socket,一旦socket可读,便调用read函数将socket中的数据读取出来。

    然而,使用select函数的优点并不仅限于此。虽然上述方式允许单线程内处理多个IO请求,但是每个IO请求的过程还是阻塞的(在select函数上阻塞),平均时间甚至比同步阻塞IO模型还要长。如果用户线程只注册自己感兴趣的socket或者IO请求,然后去做自己的事情,等到数据到来时再进行处理,则可以提高CPU的利用率。

    IO多路复用模型使用了Reactor设计模式实现了这一机制。

    图4 Reactor设计模式

    如图4所示,EventHandler抽象类表示IO事件处理器,它拥有IO文件句柄Handle(通过get_handle获取),以及对Handle的操作handle_event(读/写等)。继承于EventHandler的子类可以对事件处理器的行为进行定制。Reactor类用于管理EventHandler(注册、删除等),并使用handle_events实现事件循环,不断调用同步事件多路分离器(一般是内核)的多路分离函数select,只要某个文件句柄被激活(可读/写等),select就返回(阻塞),handle_events就会调用与文件句柄关联的事件处理器的handle_event进行相关操作。

    图5 IO多路复用

    如图5所示,通过Reactor的方式,可以将用户线程轮询IO操作状态的工作统一交给handle_events事件循环进行处理。用户线程注册事件处理器之后可以继续执行做其他的工作(异步),而Reactor线程负责调用内核的select函数检查socket状态。当有socket被激活时,则通知相应的用户线程(或执行用户线程的回调函数),执行handle_event进行数据读取、处理的工作。由于select函数是阻塞的,因此多路IO复用模型也被称为异步阻塞IO模型。注意,这里的所说的阻塞是指select函数执行时线程被阻塞,而不是指socket。一般在使用IO多路复用模型时,socket都是设置为NONBLOCK的,不过这并不会产生影响,因为用户发起IO请求时,数据已经到达了,用户线程一定不会被阻塞。

    用户线程使用IO多路复用模型的伪代码描述为:

    void UserEventHandler: :handle_event() {
    
        if (can_read(socket)) {
    
            read(socket, buffer);
    
            process(buffer);
    
        }
    
    }
    
    {
    
        Reactor.register(new UserEventHandler(socket));
    
    }
    

    用户需要重写EventHandler的handle_event函数进行读取数据、处理数据的工作,用户线程只需要将自己的EventHandler注册到Reactor即可。Reactor中handle_events事件循环的伪代码大致如下。

    Reactor: :handle_events() {
    
        while (1) {
    
            sockets = select();
    
            for (socket in sockets) {
    
                get_event_handler(socket).handle_event();
    
            }
    
        }
    
    }
    

    事件循环不断地调用select获取被激活的socket,然后根据获取socket对应的EventHandler,执行器handle_event函数即可。

    IO多路复用是最常使用的IO模型,但是其异步程度还不够“彻底”,因为它使用了会阻塞线程的select系统调用。因此IO多路复用只能称为异步阻塞IO,而非真正的异步IO。

    四、异步IO

    “真正”的异步IO需要操作系统更强的支持。在IO多路复用模型中,事件循环将文件句柄的状态事件通知给用户线程,由用户线程自行读取数据、处理数据。而在异步IO模型中,当用户线程收到通知时,数据已经被内核读取完毕,并放在了用户线程指定的缓冲区内,内核在IO完成后通知用户线程直接使用即可。

    异步IO模型使用了Proactor设计模式实现了这一机制。

    图6 Proactor设计模式

    如图6,Proactor模式和Reactor模式在结构上比较相似,不过在用户(Client)使用方式上差别较大。Reactor模式中,用户线程通过向Reactor对象注册感兴趣的事件监听,然后事件触发时调用事件处理函数。而Proactor模式中,用户线程将AsynchronousOperation(读/写等)、Proactor以及操作完成时的CompletionHandler注册到AsynchronousOperationProcessor。AsynchronousOperationProcessor使用Facade模式提供了一组异步操作API(读/写等)供用户使用,当用户线程调用异步API后,便继续执行自己的任务。AsynchronousOperationProcessor 会开启独立的内核线程执行异步操作,实现真正的异步。当异步IO操作完成时,AsynchronousOperationProcessor将用户线程与AsynchronousOperation一起注册的Proactor和CompletionHandler取出,然后将CompletionHandler与IO操作的结果数据一起转发给Proactor,Proactor负责回调每一个异步操作的事件完成处理函数handle_event。虽然Proactor模式中每个异步操作都可以绑定一个Proactor对象,但是一般在操作系统中,Proactor被实现为Singleton模式,以便于集中化分发操作完成事件。

    图7 异步IO

    如图7所示,异步IO模型中,用户线程直接使用内核提供的异步IO API发起read请求,且发起后立即返回,继续执行用户线程代码。不过此时用户线程已经将调用的AsynchronousOperation和CompletionHandler注册到内核,然后操作系统开启独立的内核线程去处理IO操作。当read请求的数据到达时,由内核负责读取socket中的数据,并写入用户指定的缓冲区中。最后内核将read的数据和用户线程注册的CompletionHandler分发给内部Proactor,Proactor将IO完成的信息通知给用户线程(一般通过调用用户线程注册的完成事件处理函数),完成异步IO。

    用户线程使用异步IO模型的伪代码描述为:

    void UserCompletionHandler: :handle_event(buffer) {
    
        process(buffer);
    
    }
    
    {
    
        aio_read(socket, new UserCompletionHandler);
    
    }
    

    用户需要重写CompletionHandler的handle_event函数进行处理数据的工作,参数buffer表示Proactor已经准备好的数据,用户线程直接调用内核提供的异步IO API,并将重写的CompletionHandler注册即可。

    相比于IO多路复用模型,异步IO并不十分常用,不少高性能并发服务程序使用IO多路复用模型+多线程任务处理的架构基本可以满足需求。况且目前操作系统对异步IO的支持并非特别完善,更多的是采用IO多路复用模型模拟异步IO的方式(IO事件触发时不直接通知用户线程,而是将数据读写完毕后放到用户指定的缓冲区中)。Java7之后已经支持了异步IO,感兴趣的读者可以尝试使用。

  • 相关阅读:
    HDU 1009 FatMouse' Trade
    HDU 2602 (简单的01背包) Bone Collector
    LA 3902 Network
    HDU 4513 吉哥系列故事——完美队形II
    LA 4794 Sharing Chocolate
    POJ (Manacher) Palindrome
    HDU 3294 (Manacher) Girls' research
    HDU 3068 (Manacher) 最长回文
    Tyvj 1085 派对
    Tyvj 1030 乳草的入侵
  • 原文地址:https://www.cnblogs.com/foxy/p/9176600.html
Copyright © 2011-2022 走看看