B. Maximum Sum of Digits
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output
You are given a positive integer nn.
Let S(x)S(x) be sum of digits in base 10 representation of xx, for example, S(123)=1+2+3=6S(123)=1+2+3=6, S(0)=0S(0)=0.
Your task is to find two integers a,ba,b, such that 0≤a,b≤n0≤a,b≤n, a+b=na+b=n and S(a)+S(b)S(a)+S(b) is the largest possible among all such pairs.
Input
The only line of input contains an integer nn (1≤n≤1012)(1≤n≤1012).
Output
Print largest S(a)+S(b)S(a)+S(b) among all pairs of integers a,ba,b, such that 0≤a,b≤n0≤a,b≤n and a+b=na+b=n.
Examples
input
Copy
35
output
Copy
17
input
Copy
10000000000
output
Copy
91
Note
In the first example, you can choose, for example, a=17a=17 and b=18b=18, so that S(17)+S(18)=1+7+1+8=17S(17)+S(18)=1+7+1+8=17. It can be shown that it is impossible to get a larger answer.
In the second test example, you can choose, for example, a=5000000001a=5000000001 and b=4999999999b=4999999999, with S(5000000001)+S(4999999999)=91S(5000000001)+S(4999999999)=91. It can be shown that it is impossible to get a larger answer.
题意:给出一个n,需要a和b,两个数,使得a+b=n且a与b各位上的数加起来和最大
样例会让人误解 其实可以其中一个都又9组成,这样各位数上的和最后就会是最大的。
#include<bits/stdc++.h> using namespace std; #define ll long long int cnt(ll a) { int sum=0; while(a) { sum+=a%10; a/=10; } return sum; } ll judge(ll a) { ll b=9; while(b<=a) { if(b*10+9>=a)break; else b=b*10+9; } return b; } int main() { ll n; cin>>n; if(n<=10)cout<<n<<endl; else { int ans=0; ans+=cnt(judge(n))+cnt(n-judge(n)); cout<<ans<<endl; } return 0; }