zoukankan      html  css  js  c++  java
  • LeetCode Majority Element

    链接: https://oj.leetcode.com/problems/majority-element/

    LeetCode给的这道题的解答真的不错:

    1. Runtime: O(n2) — Brute force solution: Check each element if it is the majority element.
    2. Runtime: O(n), Space: O(n) — Hash table: Maintain a hash table of the counts of each element, then find the most common one.
    3. Runtime: O(n log n) — Sorting: As we know more than half of the array are elements of the same value, we can sort the array and all majority elements will be grouped into one contiguous chunk. Therefore, the middle (n/2th) element must also be the majority element.
    4. Average runtime: O(n), Worst case runtime: Infinity — Randomization: Randomly pick an element and check if it is the majority element. If it is not, do the random pick again until you find the majority element. As the probability to pick the majority element is greater than 1/2, the expected number of attempts is < 2.
    5. Runtime: O(n log n) — Divide and conquer: Divide the array into two halves, then find the majority element A in the first half and the majority element B in the second half. The global majority element must either be A or B. If A == B, then it automatically becomes the global majority element. If not, then both A and B are the candidates for the majority element, and it is suffice to check the count of occurrences for at most two candidates. The runtime complexity, T(n) = T(n/2) + 2n = O(n log n).
    6. Runtime: O(n) — Moore voting algorithm: We maintain a current candidate and a counter initialized to 0. As we iterate the array, we look at the current element x:
      1. If the counter is 0, we set the current candidate to x and the counter to 1.
      2. If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate.
      After one pass, the current candidate is the majority element. Runtime complexity = O(n).
    7. Runtime: O(n) — Bit manipulation: We would need 32 iterations, each calculating the number of 1's for the ith bit of all n numbers. Since a majority must exist, therefore, either count of 1's > count of 0's or vice versa (but can never be equal). The majority number’s ith bit must be the one bit that has the greater count.

    public class Solution
    {
    	public int majorityElement(int[] num)
    	{
    		int l=num.length;
    		HashMap<Integer,Integer> data=new HashMap<Integer,Integer>();
    		for (int elem : num) {
                  if (data.containsKey(elem)) {
                      data.put(elem, data.get(elem)+1);
                  }
                  else {
                     data.put(elem, 1);
                 }
             }
    		for(int item:data.keySet())
    		{
    			if(data.get(item)>l/2)
    				return item;
    		}
    		return -1;
    	}
    }
    class Solution {
    public:
        int majorityElement(vector<int> &num) {
        int maj;
        int count = 0;
        int n = int(num.size());
        for (int i = 0; i < n; i++){
            if (count == 0){
                maj = num[i];
                count++;
            }
            else if (num[i] == maj){
                count++;
                if (count > n/2) return maj;
            }
            else count--;
        }
        return maj;
        }
    };



  • 相关阅读:
    继承和派生
    面向过程和面向对象 , 面向对象基础
    numpy模块、matplotlib模块、pandas模块
    包 ,模块(time、datetime、random、hashlib、typing、requests、re)
    os模块 sys模块 json/pickle 模块 logging模块
    python模块基础
    匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
    最简单的注册美区Apple ID方法
    迭代器 生成器 函数递归
    ODBC连接时报错不可识别的数据库格式
  • 原文地址:https://www.cnblogs.com/frankM/p/4399439.html
Copyright © 2011-2022 走看看