zoukankan      html  css  js  c++  java
  • leetcode@ [210]Course Schedule II

    Course Schedule II

    Total Accepted: 13015 Total Submissions: 64067 Difficulty: Medium

     

    There are a total of n courses you have to take, labeled from 0 to n - 1.

    Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

    There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

    For example:

    2, [[1,0]]

    There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]

    4, [[1,0],[2,0],[3,1],[3,2]]

    There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].

    Note:
    The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

     1 struct edge{
     2     int to;
     3     edge(){ this->to = 0;}
     4     edge(int t){ this->to = t;}
     5 };
     6 class Solution {
     7 public:
     8     void addEdge(vector<edge> &edgelist, vector<vector<int>> &G, int from, int to){
     9         edge e = edge(to);
    10         edgelist.push_back(e);
    11         G[from].push_back(edgelist.size()-1);
    12     }
    13     /*  calculate the indegree of all nodes in graph  */
    14     void calInDegree(vector<int> &inDegree, vector<edge> edgelist, vector<vector<int>> G){
    15         for(int i=0;i<G.size();i++){
    16             for(int k=0;k<G[i].size();++k){
    17                 edge e = edgelist[G[i][k]];
    18                 ++inDegree[e.to];
    19             }
    20         }
    21     }
    22     void topologicalSort(vector<int> &ret, vector<int> inDegree, vector<edge> edgelist, vector<vector<int>> G){
    23         stack<int> st; 
    24         while(!st.empty()) st.pop();
    25         for(int i=0;i<G.size();++i){
    26             if(!inDegree[i])  st.push(i);
    27         }
    28         while(!st.empty()){
    29             int k = st.top(); st.pop();
    30             ret.push_back(k);
    31             for(int i=0;i<G[k].size();++i){
    32                 edge e = edgelist[G[k][i]];
    33                 --inDegree[e.to];
    34                 if(!inDegree[e.to]) st.push(e.to);
    35             }
    36         }
    37         vector<int> ans;
    38         vector<int>::reverse_iterator pt=ret.rbegin();
    39         for(;pt!=ret.rend();++pt) ans.push_back(*pt);
    40         ret = ans;
    41     }
    42     vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
    43         vector<edge> edgelist; edgelist.clear();
    44         vector<vector<int> > G(numCourses);
    45         for(int i=0;i<G.size();++i) G[i].clear();
    46         vector<int> inDegree(numCourses); 
    47         for(int i=0;i<G.size();++i) inDegree[i]=0;
    48         
    49         for(int i=0;i<prerequisites.size();++i){
    50             pair<int, int> pr = prerequisites[i];
    51             addEdge(edgelist, G, pr.first, pr.second);
    52         }
    53         
    54         calInDegree(inDegree, edgelist, G);
    55         
    56         vector<int> ret; ret.clear();
    57         topologicalSort(ret,inDegree,edgelist,G);
    58         
    59         if(ret.size() < numCourses){ret.clear(); return ret;}
    60         else return ret;
    61     }
    62 };
    View Code
  • 相关阅读:
    关于Lucas定理、多项式Exp的一些思考
    Binet-Cauchy定理的证明
    CSP2019 树上的数 题解
    Graphviz学习
    Luogu P2221 [HAOI2012]高速公路题解
    CSP2019 树的重心 题解
    CSP2019 Emiya 家今天的饭 题解
    UVA10559 方块消除 Blocks 题解
    关于二次项系数为1的二元一次不定方程解法的探究
    关于对STL容器重载运算符的问题
  • 原文地址:https://www.cnblogs.com/fu11211129/p/4905937.html
Copyright © 2011-2022 走看看