https://leetcode.com/problems/word-ladder/
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
class node { public: string word; int lv; node(string s, int v): word(s), lv(v) {} }; class Solution { public: int ladderLength(string beginWord, string endWord, unordered_set<string>& wordList) { int n = wordList.size(); if(!n) return 0; bool flag = false; if(wordList.find(endWord) != wordList.end()) flag = true; wordList.insert(endWord); queue<node> st; st.push(node(beginWord, 0)); while(!st.empty()) { node top = st.front(); st.pop(); int cur_lv = top.lv; string cur_word = top.word; if(cur_word.compare(endWord) == 0) return flag? cur_lv+1: cur_lv; unordered_set<string>::iterator p = wordList.begin(); for(int i=0; i<cur_word.length(); ++i) { for(char c = 'a'; c <= 'z'; ++c) { char tmp = cur_word[i]; if(cur_word[i] != c) cur_word[i] = c; if(wordList.find(cur_word) != wordList.end()) { st.push(node(cur_word, cur_lv+1)); wordList.erase(wordList.find(cur_word)); } cur_word[i] = tmp; } } } return 0; } };