zoukankan      html  css  js  c++  java
  • USACO Generic Cow Protests Gold

    USACO Generic Cow Protests Gold

    JDOJ传送门

    洛谷传送门

    Description

    Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and
    numbered 1..N. The cows are conducting another one of their strange
    protests, so each cow i is holding up a sign with an integer A_i
    (-10,000 <= A_i <= 10,000).

    FJ knows the mob of cows will behave if they are properly grouped
    and thus would like to arrange the cows into one or more contiguous
    groups so that every cow is in exactly one group and that every
    group has a nonnegative sum.

    Help him count the number of ways he can do this, modulo 1,000,000,009.

    By way of example, if N = 4 and the cows' signs are 2, 3, -3, and
    1, then the following are the only four valid ways of arranging the
    cows:

    (2 3 -3 1)
    (2 3 -3) (1)
    (2) (3 -3 1)
    (2) (3 -3) (1)

    Note that this example demonstrates the rule for counting different
    orders of the arrangements.

    Input

    * Line 1: A single integer: N

    * Lines 2..N + 1: Line i + 1 contains a single integer: A_i

    Output

    * Line 1: A single integer, the number of arrangements modulo
    1,000,000,009.

    Sample Input

    4 2 3 -3 1

    Sample Output

    4


    题解:

    加强版。

    可用BFS水过。

    代码:

    #include<bits/stdc++.h>
    #define R register
    #pragma GCC optimize(2)
    using namespace std;
    int n,lie[100001],ans[100001];
    bool v[100001];
    priority_queue<int,vector<int>,greater<int> > e;
    char *p1,*p2,buf[100000];
    #define nc() (p1==p2 && (p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
    inline int read()
    {
        int x=0,f=1;
        char ch=nc();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')
                f=-1;
            ch=nc();
        }
        while(ch>='0'&&ch<='9')
            x=x*10+ch-'0',ch=nc();
       	return x*f;
    }
    inline void bfs(int now)
    {
    	long long k=0;
    	for(R int i=now+1;i<=n;i++)
        {
    		k+=lie[i];
    		if(k>=0)
            {
    			ans[i]+=ans[now];
    			ans[i]%=1000000009;
    			if(!v[i])
                {
    				e.push(i);
    				v[i]=1;
    			}
    		}
    	}
    }
    int main()
    {
    	ans[0]=1;
    	n=read();
    	for(R int i=1;i<=n;i++)
    		lie[i]=read();
    	e.push(0);
    	while(!e.empty())
        {
    		bfs(e.top());
            e.pop();
    	}
    	printf("%d",ans[n]);
        return 0;
    }
    
  • 相关阅读:
    Java JDBC 连接ORACLE ORA-12505错误解决方法
    SqlServer 打开/关闭列自增
    【小程序】倒计时
    【MySQL 主从同步延迟的原因及解决办法】
    【Linux Mysql主从配置】整理主从配置遇到的坑!
    关于post和get传递参数的区别
    CSS基础属性介绍
    js-06-字符串
    js-07-事件
    js-08-数组学习
  • 原文地址:https://www.cnblogs.com/fusiwei/p/13824420.html
Copyright © 2011-2022 走看看