zoukankan      html  css  js  c++  java
  • USACO Generic Cow Protests Gold

    USACO Generic Cow Protests Gold

    JDOJ传送门

    洛谷传送门

    Description

    Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and
    numbered 1..N. The cows are conducting another one of their strange
    protests, so each cow i is holding up a sign with an integer A_i
    (-10,000 <= A_i <= 10,000).

    FJ knows the mob of cows will behave if they are properly grouped
    and thus would like to arrange the cows into one or more contiguous
    groups so that every cow is in exactly one group and that every
    group has a nonnegative sum.

    Help him count the number of ways he can do this, modulo 1,000,000,009.

    By way of example, if N = 4 and the cows' signs are 2, 3, -3, and
    1, then the following are the only four valid ways of arranging the
    cows:

    (2 3 -3 1)
    (2 3 -3) (1)
    (2) (3 -3 1)
    (2) (3 -3) (1)

    Note that this example demonstrates the rule for counting different
    orders of the arrangements.

    Input

    * Line 1: A single integer: N

    * Lines 2..N + 1: Line i + 1 contains a single integer: A_i

    Output

    * Line 1: A single integer, the number of arrangements modulo
    1,000,000,009.

    Sample Input

    4 2 3 -3 1

    Sample Output

    4


    题解:

    加强版。

    可用BFS水过。

    代码:

    #include<bits/stdc++.h>
    #define R register
    #pragma GCC optimize(2)
    using namespace std;
    int n,lie[100001],ans[100001];
    bool v[100001];
    priority_queue<int,vector<int>,greater<int> > e;
    char *p1,*p2,buf[100000];
    #define nc() (p1==p2 && (p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
    inline int read()
    {
        int x=0,f=1;
        char ch=nc();
        while(ch<'0'||ch>'9')
        {
            if(ch=='-')
                f=-1;
            ch=nc();
        }
        while(ch>='0'&&ch<='9')
            x=x*10+ch-'0',ch=nc();
       	return x*f;
    }
    inline void bfs(int now)
    {
    	long long k=0;
    	for(R int i=now+1;i<=n;i++)
        {
    		k+=lie[i];
    		if(k>=0)
            {
    			ans[i]+=ans[now];
    			ans[i]%=1000000009;
    			if(!v[i])
                {
    				e.push(i);
    				v[i]=1;
    			}
    		}
    	}
    }
    int main()
    {
    	ans[0]=1;
    	n=read();
    	for(R int i=1;i<=n;i++)
    		lie[i]=read();
    	e.push(0);
    	while(!e.empty())
        {
    		bfs(e.top());
            e.pop();
    	}
    	printf("%d",ans[n]);
        return 0;
    }
    
  • 相关阅读:
    Jenkins服务器磁盘空间爆满问题解决
    U3D GPU蒙皮
    关于STRUCT优化的一个点
    UNITY优化资料收集
    U3D的结构体堆分配栈分配
    【转】UGUI研究院之缓存策略让UI打开更快(三十)
    关于U3D场景烘焙的一个想法
    【摘】如果医生给你的孩子开这些药,请主动说不!
    【转】投影矩阵的推导
    Optimizing graphics performance
  • 原文地址:https://www.cnblogs.com/fusiwei/p/13824420.html
Copyright © 2011-2022 走看看