Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案
现在支持, LocalSheduler,
ClusterScheduler,
MesosScheduler, YarnClusterScheduler
先分析ClusterScheduler
, 即standalone的Spark集群上, 因为比较单纯不涉及其他的系统, 看看Spark的任务是如何被执行的
private var taskScheduler: TaskScheduler = { case SPARK_REGEX(sparkUrl) => val scheduler = new ClusterScheduler(this) // 创建ClusterScheduler val backend = new SparkDeploySchedulerBackend(scheduler, this, sparkUrl, appName) // 创建SparkDeploySchedulerBackend scheduler.initialize(backend) scheduler }
TaskScheduler接口, 注释写的非常清楚
/** * Low-level task scheduler interface, implemented by both ClusterScheduler and LocalScheduler. * These schedulers get sets of tasks submitted to them from the DAGScheduler for each stage, * and are responsible for sending the tasks to the cluster, running them, retrying if there * are failures, and mitigating stragglers. They return events to the DAGScheduler through * the TaskSchedulerListener interface. */ private[spark] trait TaskScheduler { def rootPool: Pool def schedulingMode: SchedulingMode def start(): Unit // 启动 def postStartHook() { } def stop(): Unit // Submit a sequence of tasks to run. def submitTasks(taskSet: TaskSet): Unit // 核心, 提交taskset的接口 // Set a listener for upcalls. This is guaranteed to be set before submitTasks is called. def setListener(listener: TaskSchedulerListener): Unit // TaskScheduler会使用这个listener来汇报当前task的运行状况,会注册DAGScheduler // Get the default level of parallelism to use in the cluster, as a hint for sizing jobs. def defaultParallelism(): Int }
ClusterScheduler
对于集群的TaskScheduler实现, 相对于LocalScheduler
主要就是创建和管理schedulable tree, 参考Spark源码分析 – SchedulableBuilder
当然最终和cluster的executor通信还是需要依赖SparkDeploySchedulerBackend, 参考Spark源码分析 – SchedulerBackend
对于submitTasks,
首先将tasksetmanager放入schedulable tree等待schedule (delay schedule, 不一定会马上被调度到)
然后给SchedulerBackend发送reviveOffers event, 请求分配资源并launch tasks (launch的并一定是刚提交的tasks)
SchedulerBackend会向cluster申请workOffers(对于standalonebackend, 这步省略了), 然后再调用ClusterScheduler.resourceOffers来根据可用的workOffers分配tasks
最终给executors发送LaunchTask, 启动tasks
resourceOffers是核心函数, 当得到可用的workerOffer后, 用于从schedulable tree中schedule合适的被执行的tasks
resourceOffers的逻辑有点小复杂
1. 首先依次遍历sortedTaskSets, 并对于每个Taskset, 遍历TaskLocality
2. 越local越优先, 找不到(launchedTask为false)才会到下个locality级别
3. 在多次遍历offer list, 因为一次taskSet.resourceOffer只会占用一个core, 而不是一次用光所有的core, 这样有助于一个taskset中的task比较均匀的分布在workers上
4. 只有在该taskset, 该locality下, 对所有worker offer都找不到合适的task时, 才跳到下个locality级别
private[spark] class ClusterScheduler(val sc: SparkContext) extends TaskScheduler with Logging { var listener: TaskSchedulerListener = null var backend: SchedulerBackend = null val mapOutputTracker = SparkEnv.get.mapOutputTracker var schedulableBuilder: SchedulableBuilder = null var rootPool: Pool = null // default scheduler is FIFO val schedulingMode: SchedulingMode = SchedulingMode.withName( System.getProperty("spark.scheduler.mode", "FIFO"))
def initialize(context: SchedulerBackend) { backend = context // 初始化SchedulerBackend // temporarily set rootPool name to empty rootPool = new Pool("", schedulingMode, 0, 0) // 创建Schedulable tree的root pool schedulableBuilder = { // 用schedulableBuilder初始化Schedulable tree schedulingMode match { case SchedulingMode.FIFO => new FIFOSchedulableBuilder(rootPool) case SchedulingMode.FAIR => new FairSchedulableBuilder(rootPool) } } schedulableBuilder.buildPools() }
override def start() { backend.start() // 启动SchedulerBackend } override def submitTasks(taskSet: TaskSet) { val tasks = taskSet.tasks logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks") this.synchronized { val manager = new ClusterTaskSetManager(this, taskSet) activeTaskSets(taskSet.id) = manager schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) // 将TaskSetManager加到Schedulable tree等待被调度执行 taskSetTaskIds(taskSet.id) = new util.HashSet[Long]() backend.reviveOffers() // 调用SchedulerBackend的reviveOffers, 其实就是往DriverActor发送reviveOffers事件 }
/**
* Called by cluster manager to offer resources on slaves. We respond by asking our active task
* sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
* that tasks are balanced across the cluster.
*/
// 根据当前可用的worker offers, 分配tasks def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized { SparkEnv.set(sc.env) // Build a list of tasks to assign to each worker val tasks = offers.map(o => new ArrayBuffer[TaskDescription](o.cores)) // 每个core可以分配一个task,所以对每个offer生成length为cores数目的ArrayBuffer val availableCpus = offers.map(o => o.cores).toArray // 每个work可用的core数目的array val sortedTaskSets = rootPool.getSortedTaskSetQueue() // 得到根据schedule算法排序后的TaskSetManager列表 // Take each TaskSet in our scheduling order, and then offer it each node in increasing order // of locality levels so that it gets a chance to launch local tasks on all of them. var launchedTask = false for (taskSet <- sortedTaskSets; maxLocality <- TaskLocality.values) { // 嵌套, 遍历sortedTaskSets, 并对每个taskSet遍历所有TaskLocality do { launchedTask = false for (i <- 0 until offers.size) { // 遍历每个offer, 试图在当前的taskset和当前的locality上找到合适的task val execId = offers(i).executorId val host = offers(i).host for (task <- taskSet.resourceOffer(execId, host, availableCpus(i), maxLocality)) { // 每次只会返回最多一个task tasks(i) += task val tid = task.taskId taskIdToTaskSetId(tid) = taskSet.taskSet.id taskSetTaskIds(taskSet.taskSet.id) += tid taskIdToExecutorId(tid) = execId activeExecutorIds += execId executorsByHost(host) += execId availableCpus(i) –= 1 // 分配一个task, 所以availableCpus - 1 launchedTask = true } } } while (launchedTask) // 找到,就继续在这个locality上找task, 否则放宽到下个locality,或下个taskset } if (tasks.size > 0) { hasLaunchedTask = true } return tasks }
}