zoukankan      html  css  js  c++  java
  • bzoj1420/1319 Discrete Root

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1420

    http://www.lydsy.com/JudgeOnline/problem.php?id=1319

    【题解】

    求x^A=B(mod P),其中P是质数。

    考虑对两边取log,设g为P的原根。

    Alog(x) = log(B) (mod P-1)

    log(x)表示以g为底的log

    那么log(B) = y,其中g^y = B (mod P),用BSGS求出即可。

    我们要求的是x,不妨先求log(x),设ans=log(x)

    那么A*ans + (P-1)*k = y。这是一个exgcd的形式,所以我们可以求出ans的所有解(由于相当于指数,所以必须小于P-1)

    然后快速幂即可。

    # include <map>
    # include <math.h>
    # include <stdio.h>
    # include <assert.h>
    # include <string.h>
    # include <iostream>
    # include <algorithm>
    // # include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    const int M = 5e5 + 10;
    const int mod = 1e9+7;
    
    # define RG register
    # define ST static
    
    ll A, B, P, B0;
    ll g, ans[M]; int ansn=0;
    
    inline ll pwr(ll a, ll b, ll P) {
        ll ret = 1; a %= P;
        while(b) {
            if(b&1) ret = ret * a % P;
            a = a * a % P;
            b >>= 1;
        }
        return ret;
    }
    
    ll y[M];
    inline ll G(ll x) {
        ll t = x; int nn = 0;
        for (int i=2; i*i<=x; ++i) {
            if(x%i) continue;
            y[++nn] = i;
            while(x%i == 0) x/=i;
        }
        if(x != 1) y[++nn] = x;
        for (ll g=2; ; ++g) {
            bool flag = 1;
            for (int i=1; i<=nn; ++i)
                if(pwr(g, t/y[i], P) == 1) {
                    flag = 0;
                    break;
                }
            if(flag) return g;
        }
    }
    
    map<ll, int> mp;
    inline ll BSGS(ll A, ll B, ll P) {
        mp.clear();
        int m = ceil(sqrt(1.0 * P));
        ll t = B, g;
        for (int i=0; i<m; ++i) {
            if(!mp[t]) mp[t] = i;
            t = t * A % P;
        }
        g = pwr(A, m, P); t = g;
        for (int i=1, ps; i<=m+1; ++i) {
            if(mp.count(t)) return (ll)i*m - mp[t];
            t = t * g % P;
        }
        return -1;
    }
    
    ll exgcd(ll a, ll b, ll &x, ll &y) {
        if(b == 0) {
            x = 1, y = 0;
            return a;
        }
        ll ret = exgcd(b, a%b, x, y), t;
        t = x;
        x = y;
        y = t - (a/b) * y;
        return ret;
    }
    
    int main() {
        cin >> P >> A >> B;
        g = G(P-1);
    //    cout << g << endl;
        // x^A = B (mod P)
        // A log_g(x) = log_g(B) (mod P-1)
        B0 = BSGS(g, B, P);
        assert(B0 != -1);
    //    cout << B0 << endl;
        ll tx, ty, GCD;
        GCD = exgcd(A, P-1, tx, ty);
        if(B0 % GCD) {
            puts("0");
            return 0;
        }
        
        ty = (P-1)/GCD;
        tx = (tx % ty + ty) % ty;
        tx = (tx * B0/GCD) % ty;
        while(tx < P-1) {
            ans[++ansn] = pwr(g, tx, P);
            tx += ty;
        }
        sort(ans+1, ans+ansn+1);
        
        cout << ansn << endl;
        for (int i=1; i<=ansn; ++i) 
            printf("%lld
    ", ans[i]);
        return 0;
    }
    View Code
  • 相关阅读:
    【每日一题-leetcode】 47.全排列 II
    【每日一题-leetcode】46.全排列
    【每日一题-leetcode】 77.组合
    【每日一题-leetcode】105.从前序与中序遍历序列构造二叉树
    【每日一题-leetcode】297.二叉树的序列化与反序列化
    【读书笔记】《淘宝技术这十年》
    python第17天-网络复习
    python编码风格
    python第16天-网络4
    python第15天-网络3
  • 原文地址:https://www.cnblogs.com/galaxies/p/bzoj1420.html
Copyright © 2011-2022 走看看