看到比值先二分答案。于是转化成一个非常裸的树形背包。直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对。这里使用一种更通用的dfs序优化树形背包写法。https://www.cnblogs.com/zzqsblog/p/5537440.html 即设f[i][j]为在dfs序第i~n个点中选j个(所选点不一定连通)的最大权值,考虑是否选择第i个点,如果不选显然f[i][j]=f[i+size][j],否则f[i][j]=f[i+1][j-1]+v[i]。注意dp过程中虽然没有保证所选点都连通,但一旦考虑完一棵子树,子树内部就一定构成连通块了。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 2510 char getc(){char c=getchar();while (c==10||c==13||c==32) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } const double eps=1E-5; int n,m,w[N],v[N],fa[N],p[N],id[N],size[N],cnt=-1,t; double a[N],f[N][N]; struct data{int to,nxt; }edge[N<<1]; void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;} void dfs(int k) { id[++cnt]=k;size[k]=1; for (int i=p[k];i;i=edge[i].nxt) if (edge[i].to!=fa[k]) dfs(edge[i].to),size[k]+=size[edge[i].to]; } bool check() { for (int i=0;i<=n+1;i++) for (int j=1;j<=m+1;j++) f[i][j]=-100000000; for (int i=n;i>=0;i--) for (int j=1;j<=m+1;j++) f[i][j]=max(f[i+1][j-1]+a[id[i]],f[i+size[id[i]]][j]); return f[0][m+1]>=0; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj4753.in","r",stdin); freopen("bzoj4753.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif m=read(),n=read(); double l=0,r=0,ans=0; for (int i=1;i<=n;i++) { w[i]=read(),r+=v[i]=read(),fa[i]=read(); addedge(fa[i],i); } dfs(0); while (l+eps<r) { double mid=(l+r)/2; for (int i=1;i<=n;i++) a[i]=v[i]-w[i]*mid; if (check()) ans=mid,l=mid+eps; else r=mid-eps; } printf("%.3f",ans); return 0; }