zoukankan      html  css  js  c++  java
  • FlaskSQLAlchemy

    SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

    pip3 install sqlalchemy
    

     

    组成部分:

    • Engine,框架的引擎
    • Connection Pooling ,数据库连接池
    • Dialect,选择连接数据库的DB API种类
    • Schema/Types,架构和类型
    • SQL Exprression Language,SQL表达式语言

    SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

    MySQL-Python
        mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
        
    pymysql
        mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
        
    MySQL-Connector
        mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
        
    cx_Oracle
        oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
        
    更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
    

     1. 执行原生SQL语句

     1 import time
     2 import threading
     3 import sqlalchemy
     4 from sqlalchemy import create_engine
     5 from sqlalchemy.engine.base import Engine
     6  
     7 engine = create_engine(
     8     "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
     9     max_overflow=0,  # 超过连接池大小外最多创建的连接
    10     pool_size=5,  # 连接池大小
    11     pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
    12     pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    13 )
    14  
    15  
    16 def task(arg):
    17     conn = engine.raw_connection()
    18     cursor = conn.cursor()
    19     cursor.execute(
    20         "select * from t1"
    21     )
    22     result = cursor.fetchall()
    23     cursor.close()
    24     conn.close()
    25  
    26  
    27 for i in range(20):
    28     t = threading.Thread(target=task, args=(i,))
    29     t.start()
    方法1
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 import sqlalchemy
     6 from sqlalchemy import create_engine
     7 from sqlalchemy.engine.base import Engine
     8 
     9 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)
    10 
    11 
    12 def task(arg):
    13     conn = engine.contextual_connect()
    14     with conn:
    15         cur = conn.execute(
    16             "select * from t1"
    17         )
    18         result = cur.fetchall()
    19         print(result)
    20 
    21 
    22 for i in range(20):
    23     t = threading.Thread(target=task, args=(i,))
    24     t.start()
    方法2
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 import sqlalchemy
     6 from sqlalchemy import create_engine
     7 from sqlalchemy.engine.base import Engine
     8 from sqlalchemy.engine.result import ResultProxy
     9 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)
    10 
    11 
    12 def task(arg):
    13     cur = engine.execute("select * from t1")
    14     result = cur.fetchall()
    15     cur.close()
    16     print(result)
    17 
    18 
    19 for i in range(20):
    20     t = threading.Thread(target=task, args=(i,))
    21     t.start()
    方法3
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 
     6 from sqlalchemy.ext.declarative import declarative_base
     7 from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
     8 from sqlalchemy.orm import sessionmaker, relationship
     9 from sqlalchemy import create_engine
    10 from db import Users
    11 
    12 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    13 Session = sessionmaker(bind=engine)
    14 
    15 
    16 def task(arg):
    17     session = Session()
    18 
    19     obj1 = Users(name="alex1")
    20     session.add(obj1)
    21 
    22     session.commit()
    23 
    24 
    25 for i in range(10):
    26     t = threading.Thread(target=task, args=(i,))
    27     t.start()
    28 
    29 多线程执行示例
    基于scoped_session实现线程安全
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 
     6 from sqlalchemy.ext.declarative import declarative_base
     7 from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
     8 from sqlalchemy.orm import sessionmaker, relationship
     9 from sqlalchemy import create_engine
    10 from db import Users
    11 
    12 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    13 Session = sessionmaker(bind=engine)
    14 
    15 
    16 def task(arg):
    17     session = Session()
    18 
    19     obj1 = Users(name="alex1")
    20     session.add(obj1)
    21 
    22     session.commit()
    23 
    24 
    25 for i in range(10):
    26     t = threading.Thread(target=task, args=(i,))
    27     t.start()
    28 
    29 多线程执行示例
    多线程

     1 #新增一条数据
     2 #原生sql:insert  into mysql.hello_word(name,password) values("test2","1234");
     3 obj = User(name="test", password="1234")  #生成你要创建的数据对象
     4 session.add(obj) #把要创建的数据对象添加到这个session里, 一会统一创建
     5 session.commit() #统一提交,创建数据,在此之前数据库是不会有新增数据的
     6  
     7 #新增多条数据
     8 #原生sql:insert  into mysql.hello_word(name,password) values("test2","1234"),("test3","123");
     9 obj = User(name="test", password="1234")
    10 obj1 = User(name="test", password="1234")
    11 session.add_all([obj,obj1])
    12 session.commit()<br><br>#回滚,在session.add()之后,在session.commit()之前,想把添加至session缓存中的数据清除,使用rollback()函数回滚即可<br>Session.rollback()

    1 #原生sql:mysql.hello_word where id > 5;
    2 session.query(User).filter(User.id > 5).delete() #通过session查询User类,然后过滤出id>5的进行删除
    3 session.commit() #提交

     1 #①第一种方式
     2 data = Session.query(User).filter_by(name="test1").first()  #获取数据
     3 data.name = "test"  #修改数据
     4 Session.commit()   #提交
     5  
     6 #②第二种方式,通过查找表,过滤条件,然后更新对应参数
     7 session.query(User).filter(User.id > 15).update({"name": "test"})
     8 session.query(User).filter(User.id == 18).update({User.name: "hello"}, synchronize_session=False)
     9 session.query(User).filter_by(name="test1").update({User.password: User.name}, synchronize_session="evaluate")
    10 session.commit()
    11  
    12 #③synchronize_session解释,用于query在进行delete or update操作时,对session的同步策略:
    13 #1、synchronize_session=False,不对session进行同步,直接进行delete or update操作。
    14 #2、synchronize_session="evaluate",在delete or update操作之前,用query中的条件直接对session的identity_map中的objects进行eval操作,将符合条件的记录下来, 在delete or update操作之后,将符合条件的记录删除或更新。

     1 #原生sql:select * from mysql.hello_word;
     2 ret = session.query(User).all()  #查询所有
     3 #也可以这样写:
     4 ret = Session.query(User.name,User.id).all()
     5  
     6 #原生slq:select name,password from mysql.hello_word;
     7 ret = session.query(User.name, User.extra).all()  #只查询name和extra字段所以所有数据
     8  
     9 #原生sql:select * from mysql.hello_word where name="test1";
    10 ret = session.query(User).filter_by(name='test1').all() #查询name='alex'的所有数据
    11 ret = session.query(User).filter_by(name='test1').first()#查询name='alex'的第一条数据
    12  
    13 #查询id>5的name字段内容,且以id大小排序
    14 #原生sql;select name from mysql.hello_word where id >5 order by id;
    15 ret = session.query(User).filter(text("id>:value and name=:name")).params(value=5, name='test2').order_by(User.id).all()
    16  
    17 #根据原生sql查询数据
    18 ret = session.query(User).from_statement(text("SELECT * FROM hello_word where name=:name")).params(name='test1').all()

     filter和filter_by使用的区别

    1 #filter用于sql表达式查询过滤,如>,<, ==,等表达式
    2 session.query(MyClass).filter(MyClass.name == 'some name')
    3 #filter_by用于关键字查询过滤,如id=value,name=value
    4 session.query(MyClass).filter_by(name = 'some name')

    重构__repr__方法,将5.1 中ret内存对象按__repr__方法中定义的格式进行打印显示

     1 class User(Base):
     2     __tablename__ = "hello_word"  # 表名
     3     id = Column(Integer, primary_key=True)
     4     name = Column(String(32))
     5     password = Column(String(64))
     6  
     7     def __repr__(self):    # 使返回的内存对象变的可读
     8         return "<id:{0} name:{1} password:{2}>".format(self.id, self.name, self.password)
     9  
    10 #Base.metadata.create_all(connect)  # 创建标结构
    11  
    12 session_class = sessionmaker(bind=connect)  # 创建与数据库的会话session class ,这里返回给session的是个class,不是实例
    13 session = session_class()   # 生成session实例
    14  
    15 user = session.query(User).all()  #查询全部
    16 print(user)
    17  
    18 #输出
    19 [<id:1 name:test1 password:1234>, <id:2 name:test1 password:1234>, <id:8 name:test2 password:1234>, <id:9 name:test3 password:123>, <id:10 name:test4 password:123>, <id:11 name:test5 password:123>, <id:12 name:test2 password:1234>, <id:13 name:test3 password:123>, <id:14 name:test4 password:123>, <id:15 name:test5 password:123>, <id:16 name:test2 password:1234>, <id:17 name:test3 password:123>, <id:18 name:test4 password:123>, <id:19 name:test5 password:123>]
    View Code

     其他操作

     1 #多条件查询
     2 #原生sql:select * from mysql.hello_word where id >2 and id < 19
     3 data = session.query(User).filter(Use.id>2).filter(Use.id<19).all()
     4  
     5 #通配符
     6 
     7 #原生sql:select * from mysql.hello_word where name like "test%" #"test_"、%test%
     8 data = session.query(User).filter(User.name.like('test%')).all() #匹配以test开头,而后跟多个字符
     9 data = session.query(User).filter(User.name.like('test_')).all() #匹配以test开头,而后跟一个字符
    10 data = session.query(User).filter(~User.name.like('e%')).all() #加~后,忽略like(),直接匹配所有
    11 #原生sql select count(name) from mysql.hello_word where name like "%test%"
    12 data = session.query(User).filter(User.name.like("%qigao%")).count() # 模糊匹配并计数
    13 
    14 #分组
    15 
    16 from sqlalchemy import func #导入func 进行函数操作
    17 #原生sql:select count(name),name from mysql.hello_word group by name
    18 data =session.query(func.count(User.name),User.name).group_by(User.name).all()  #根据User.name分组
    19 #原生sql:select max(id),sum(id),min(id) from mysql.hello_word group by name  #根据name 分组
    20 data =session.query(func.max(User.id),func.sum(User.id),func.min(User.id)).group_by(User.name).all()
    21 #原生sql:select max(id),sum(id),min(id) from mysql.hello_word group by name having min(id > 2) # 根据name分组且id>2
    22 data = session.query(func.max(User.id),func.sum(User.id),func.min(User.id)).group_by(User.name).having(func.min(User.id) >2).all()
    23 
    24 #排序
    25 
    26 #原生sql:select * from mysql.hello_word  order by id asc
    27 data = session.query(User).order_by(User.id.asc()).all() #将所有数据根据 “列” 从小到大排列
    28 #原生sql:select * from mysql.hello_word  order by id desc, id asc
    29 data = session.query(User).order_by(User.id.desc(), User.id.asc()).all()#将所有数据根据 “列1” 从大到小排列,如果相同则按照“列2”由小到大排列
    30  
    31  
    32 #条件表达式 in、between、 and 、or
    33 data = session.query(User).filter_by(name='test').all()
    34 data = session.query(User).filter(User.id > 1, Users.name == 'test').all()
    35 data = session.query(User).filter(User.id.between(1, 3), Users.name == 'test').all()
    36 data = session.query(User).filter(User.id.in_([1,3,4])).all()
    37 data = session.query(User).filter(~User.id.in_([1,3,4])).all()
    38 data = session.query(User).filter(Users.id.in_(session.query(User.id).filter_by(name='test'))).all()
    39  
    40 from sqlalchemy import and_, or_
    41 data = session.query(User).filter(and_(User.id > 3, Users.name == 'test')).all()
    42 data = session.query(User).filter(or_(User.id < 2, Users.name == 'test')).all()
    43 data = session.query(User).filter(or_(User.id < 2,and_(User.name == 'test',User.id > 3),User.password != "")).all()
    View Code
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 
     6 from sqlalchemy.ext.declarative import declarative_base
     7 from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
     8 from sqlalchemy.orm import sessionmaker, relationship
     9 from sqlalchemy import create_engine
    10 from sqlalchemy.sql import text
    11 from sqlalchemy.engine.result import ResultProxy
    12 from db import Users, Hosts, Hobby, Person
    13 
    14 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
    15 Session = sessionmaker(bind=engine)
    16 session = Session()
    17 # 添加
    18 """
    19 session.add_all([
    20     Hobby(caption='乒乓球'),
    21     Hobby(caption='羽毛球'),
    22     Person(name='张三', hobby_id=3),
    23     Person(name='李四', hobby_id=4),
    24 ])
    25 
    26 person = Person(name='张九', hobby=Hobby(caption='姑娘'))
    27 session.add(person)
    28 
    29 hb = Hobby(caption='人妖')
    30 hb.pers = [Person(name='文飞'), Person(name='博雅')]
    31 session.add(hb)
    32 
    33 session.commit()
    34 """
    35 
    36 # 使用relationship正向查询
    37 """
    38 v = session.query(Person).first()
    39 print(v.name)
    40 print(v.hobby.caption)
    41 """
    42 
    43 # 使用relationship反向查询
    44 """
    45 v = session.query(Hobby).first()
    46 print(v.caption)
    47 print(v.pers)
    48 """
    49 
    50 session.close()
    51 
    52 基于relationship操作ForeignKey
    基于relationship操作ForeignKey
     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 import time
     4 import threading
     5 
     6 from sqlalchemy.ext.declarative import declarative_base
     7 from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
     8 from sqlalchemy.orm import sessionmaker, relationship
     9 from sqlalchemy import create_engine
    10 from sqlalchemy.sql import text
    11 from sqlalchemy.engine.result import ResultProxy
    12 from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group
    13 
    14 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
    15 Session = sessionmaker(bind=engine)
    16 session = Session()
    17 # 添加
    18 """
    19 session.add_all([
    20     Server(hostname='c1.com'),
    21     Server(hostname='c2.com'),
    22     Group(name='A组'),
    23     Group(name='B组'),
    24 ])
    25 session.commit()
    26 
    27 s2g = Server2Group(server_id=1, group_id=1)
    28 session.add(s2g)
    29 session.commit()
    30 
    31 
    32 gp = Group(name='C组')
    33 gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
    34 session.add(gp)
    35 session.commit()
    36 
    37 
    38 ser = Server(hostname='c6.com')
    39 ser.groups = [Group(name='F组'),Group(name='G组')]
    40 session.add(ser)
    41 session.commit()
    42 """
    43 
    44 
    45 # 使用relationship正向查询
    46 """
    47 v = session.query(Group).first()
    48 print(v.name)
    49 print(v.servers)
    50 """
    51 
    52 # 使用relationship反向查询
    53 """
    54 v = session.query(Server).first()
    55 print(v.hostname)
    56 print(v.groups)
    57 """
    58 
    59 
    60 session.close()
    61 
    62 基于relationship操作m2m
    基于relationship操作m2m
  • 相关阅读:
    weekly review 200812: Tire
    monthly report 200802: between the festival and the happiness
    weekly review 200813: Ill
    Android中的SharedPreferences
    如何使用Github上的开源项目
    Android四大组件
    开发者需知的10类工具
    activity中onResume()的用处
    Redhat 5.4 + ASM + RAW+ Oracle 10g RAC 安装文档
    Oracle 索引扫描的五种类型
  • 原文地址:https://www.cnblogs.com/ganxiang/p/10997486.html
Copyright © 2011-2022 走看看