zoukankan      html  css  js  c++  java
  • 算法学习笔记:关联分析(转)

    刚接触数据挖掘,就免不了要听到沃尔玛的啤酒与尿布的典故,是不是真的就不知道了,确定的是这个典故用的就是关联分析。

    一、概念理解

    置信度、支持度、提升度是评价关联规则的三个重要指标。

    样本100,条件A=》结果B,A:60,B40,同时发生A和B:30

    则:

    条件支持度=P(A)=条件A60/样本100=0.6

    结果支持度=P(B)=结果B40/样本100=0.4(在sas中称为预期置信度)

    规则支持度=P(A&B)=30/100=0.3

    规则置信度=P(B|A)=P(A&B)/P(A)=30/60=0.5,即同时发生的记录数除以样本数,

    提升度=P(B|A)/P(B)=0.5/0.4=1.25

    ,注意不要混淆了条件支持度和规则支持度,网文好多只说支持度,实际上有的指的条件支持度、有的值规则支持度,我今天搞了一早上才恍然大悟,效率低啊,自我鄙视一下。

    在spss的apriori的运行结果中还有部署能力的概念,观察了一下,发现:部署能力=条件支持度-规则支持度,就是说还有多少人有发展空间,比如有10人,符合条件的有7人,同时如何条件和结果的有4人,那部署能力就是7-4=3人了。

    二、算法

    关联分析基本就是Apriori算法,没用过其他的。

    apriori算法的具体实现就不说,暂时我也说不清楚,我只追求会用,不求甚解,只知道大概步骤就是:1、根据设置的条件支持度找出频繁项集;2、分析找出来的这些频繁项集,得出规则;3、找出大于或等于给定置信度的规则。

    一般各个dm软件跑apriori算法的时候都需要设置:最小条件支持度,最小规则置信度,有的还需要设置最大前项数,spss的modeler就需要设置这三个。

  • 相关阅读:
    leetCode 61.Rotate List (旋转链表) 解题思路和方法
    aar格式
    hadoop生态系统学习之路(六)hive的简单使用
    centOS 7中上网以及网卡的一些设置
    Codeforces 223C Partial Sums 数论+组合数学
    项目管理:怎样让例会高效
    Web用户的身份验证及WebApi权限验证流程的设计和实现
    IIS7 经典模式和集成模式的区别分析
    JS实现密码加密
    discuz !NT 3.5 论坛整合 .net 网站用户登录,退出
  • 原文地址:https://www.cnblogs.com/gary-bao/p/4568412.html
Copyright © 2011-2022 走看看