Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 14742 | Accepted: 5354 |
Description
You are given a sequence of n integersa1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indicesi and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integersai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integersn and
q (1 ≤ n, q ≤ 100000). The next line containsn integers
a1 , ... , an (-100000 ≤ ai ≤ 100000, for eachi ∈ {1, ..., n}) separated by spaces. You can assume that for each
i ∈ {1, ..., n-1}: ai ≤ ai+1. The followingq lines contain one query each, consisting of two integers
i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0
Sample Output
1
4
3
Source
题目链接:http://poj.org/problem?
id=3368
题目大意:有一串数字,查询区间中频数最大的数字的频数
题目分析:由于数字是按非递增序排列好的,我们能够先预处理出某连续数字在当前位置时出现的频数,比方例子有
dp[1]=1,val[1] = -1
dp[2]=2,val[2] = -1
dp[3]=1,val[3] = 1
dp[4]=2,val[4] = 1
dp[5]=3,val[5] = 1
dp[6]=4。val[6] = 1
。。。
则对于查询区间(l,r)。答案即为区间(l。tmp)和(tmp。r)某一数字出现的频数的较大的那个(l <= tmp <= r)
对于区间(l,tmp)直接可得出答案。对于区间(tmp, r)我们能够用RMQ求解
代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; int const MAX = 100005; int st[MAX][20], dp[MAX], val[MAX]; int n, q; void RMQ_Init() { for(int i = 1; i <= n; i++) st[i][0] = dp[i]; int k = log((double)(n + 1)) / log(2.0); for(int j = 1; j <= k; j++) for(int i = 1; i + (1 << j) - 1 <= n; i++) st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } int Query(int l, int r) { if(l > r) return 0; int k = log((double)(r - l + 1)) / log(2.0); return max(st[l][k], st[r - (1 << k) + 1][k]); } int main() { while(scanf("%d", &n) != EOF && n) { scanf("%d", &q); dp[1] = 1; for(int i = 1; i <= n; i++) { scanf("%d", &val[i]); if(i > 1) dp[i] = (val[i] == val[i - 1] ?dp[i - 1] + 1 : 1); } RMQ_Init(); while(q--) { int l, r; scanf("%d %d", &l, &r); int tmp = l; while(tmp <= r && val[tmp] == val[tmp - 1]) tmp ++; printf("%d ", max(Query(tmp, r), tmp - l)); } } }