zoukankan      html  css  js  c++  java
  • hdu 5119 dP

    E - Happy Matt Friends
    Time Limit:6000MS     Memory Limit:510000KB     64bit IO Format:%I64d & %I64u

    Description

    Matt has N friends. They are playing a game together. 

    Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins. 

    Matt wants to know the number of ways to win.
     

    Input

    The first line contains only one integer T , which indicates the number of test cases. 

    For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 10 6). 

    In the second line, there are N integers ki (0 ≤ k i ≤ 10 6), indicating the i-th friend’s magic number.
     

    Output

    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
     

    Sample Input

    2 3 2 1 2 3 3 3 1 2 3
     

    Sample Output

    Case #1: 4 Case #2: 2

    Hint

    In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4. 
     
    
    
    分析:首先看题发现并没有什么明显的规律。然后考虑dp
          dp[i][j]表示 前i个数里面异或值为j的方法数
          找到递推关系就可以;
    #include <iostream>
    #include <stdio.h>
    #include <string>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    
    const int maxn=1e6+100;
    int n,m,test;
    int a[maxn];
    ll dp[44][maxn];
    
    ll solve()
    {
       memset(dp,0,sizeof(dp));
       dp[1][0]=dp[1][a[1]]=1;
       for(int i=2;i<=n;i++)
       {
          for(int j=0;j<maxn;j++)dp[i][j]+=dp[i-1][j];
          for(int j=0;j<maxn;j++)dp[i][a[i]^j]+=dp[i-1][j];
       }
       ll ans=0;
       for(int i=m;i<maxn;i++)
        ans+=dp[n][i];
       return ans;
    }
    
    int main()
    {
       int T,test=1;
       scanf("%d",&T);
       while( T-- )
       {
           scanf("%d%d",&n,&m);
           for(int i=1;i<=n;i++)
             scanf("%d",&a[i]);
    
           ll ans=solve();
           printf("Case #%d: %lld
    ",test++,ans);
       }
       return 0;
    }
    

  • 相关阅读:
    oracle角色、权限和用户
    轻松解决oracle11g 空表不能exp导出的问题
    oracle 11g杀掉锁的sql
    oracle创建表空间
    js 读取xml文件
    oracle decode函数使用方
    oracle的触发器的实战使用
    oracle获取日期的数字格式,24小时制
    oracle判断表中的某个字段是否为数字trim+translate函数或regexp_like函数
    java String字符串操作 字符串加密等
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/6901211.html
Copyright © 2011-2022 走看看