zoukankan      html  css  js  c++  java
  • hdu 5119 dP

    E - Happy Matt Friends
    Time Limit:6000MS     Memory Limit:510000KB     64bit IO Format:%I64d & %I64u

    Description

    Matt has N friends. They are playing a game together. 

    Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins. 

    Matt wants to know the number of ways to win.
     

    Input

    The first line contains only one integer T , which indicates the number of test cases. 

    For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 10 6). 

    In the second line, there are N integers ki (0 ≤ k i ≤ 10 6), indicating the i-th friend’s magic number.
     

    Output

    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
     

    Sample Input

    2 3 2 1 2 3 3 3 1 2 3
     

    Sample Output

    Case #1: 4 Case #2: 2

    Hint

    In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4. 
     
    
    
    分析:首先看题发现并没有什么明显的规律。然后考虑dp
          dp[i][j]表示 前i个数里面异或值为j的方法数
          找到递推关系就可以;
    #include <iostream>
    #include <stdio.h>
    #include <string>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    
    const int maxn=1e6+100;
    int n,m,test;
    int a[maxn];
    ll dp[44][maxn];
    
    ll solve()
    {
       memset(dp,0,sizeof(dp));
       dp[1][0]=dp[1][a[1]]=1;
       for(int i=2;i<=n;i++)
       {
          for(int j=0;j<maxn;j++)dp[i][j]+=dp[i-1][j];
          for(int j=0;j<maxn;j++)dp[i][a[i]^j]+=dp[i-1][j];
       }
       ll ans=0;
       for(int i=m;i<maxn;i++)
        ans+=dp[n][i];
       return ans;
    }
    
    int main()
    {
       int T,test=1;
       scanf("%d",&T);
       while( T-- )
       {
           scanf("%d%d",&n,&m);
           for(int i=1;i<=n;i++)
             scanf("%d",&a[i]);
    
           ll ans=solve();
           printf("Case #%d: %lld
    ",test++,ans);
       }
       return 0;
    }
    

  • 相关阅读:
    Java之Map遍历方式性能分析:ketSet与entrySet
    Java之null保留字
    Java之&0xff用法解析以及原码、反码、补码相关知识
    Android之使用apt编写编译时注解
    Android之ViewPager.PageTransformer
    Android Studio利用javac导出Api文档
    06_Java多线程、线程间通信
    05_Java异常(Exception)
    04_Java面向对象特征之继承与多态
    03_Java面向对象特征: 封装性
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/6901211.html
Copyright © 2011-2022 走看看