zoukankan      html  css  js  c++  java
  • poj 1156 Palindrome

    Palindrome
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 51631   Accepted: 17768

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome. 

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2


    题意:

    给你一串字符串,让你求最少增加几个字符,才干使得这个字符串是个回文串。

    分析:

    设a[i]是这个字符串,b[i]是这个字符串的逆序串。

    那么a[i],b[i]的最长公共子序列就是所求的字符串里拥有的最大的回文串。

    然后用总串长度减去最大的回文串长度即为所求。


    求最长公共子序列:

    1).递归式写成:


    recursive formula


    2).回溯输出最长公共子序列过程:

    flow

     

    #include<stdio.h>
    #include<iostream>
    using namespace std;
    #define Max 5001
    
    char a[Max],b[Max];
    short int dp[Max][Max];    // 用short int数组
    
    int max(int x,int y)
    {
    	return (x>y?x:y);
    }
    
    int main ()
    {
    	
    	int n,i,j;
    	scanf("%d",&n);
    	getchar();
    	for(i=1,j=n;i<=n,j>=1;i++,j--)
    	{
    		scanf("%c",&a[i]);
    		b[j]=a[i];
    	}
    	
    	for(i=0;i<=n;i++)  
        {  
            dp[i][0]=0;  
            dp[0][i]=0;  
        }  
    	
    	for(i=1;i<=n;i++)    // 求最长公共子序列
    	{
    		for(j=1;j<=n;j++)
    		{
    			if(a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1;
    			else           dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    		}
    		
    	}
    	printf("%d
    ",n-dp[n][n]);   // 总串长度减去最长公共子序列(最大的回文串)长度
    	return 0;
    }




  • 相关阅读:
    【搞定GTD】如何开始实践GTD?
    【iOS开发笔记21/50】获取应用程序的名称和版本号
    读书笔记:《冠军记忆术》
    【桥牌笔记】绝对不能让东家上手
    OpenInventor开发笔记:解决FaceSet的填充问题
    JasonHelper.Escape 转换字符串为jason格式代码
    在合适的场合使用 with (nolock) 提升查询性能
    嫁给程序员吧!【转】
    美国的工薪族阶层只承担全国"个税”总量的5%
    探秘System.Threading系列 第三篇:Thread的数据ThreadStatic 和LocalDataStoreSlot
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/3986236.html
Copyright © 2011-2022 走看看