zoukankan      html  css  js  c++  java
  • HDU1695-GCD(数论-欧拉函数-容斥)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5454    Accepted Submission(s): 1957


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     

    Output
    For each test case, print the number of choices. Use the format in the example.
     

    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     

    题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

    思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1,b) 能够分解质因数,由于质因数的个数最多为7能够用容斥原理计算。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <queue>
    using namespace std;
    
    const int maxn = 10000+10;
    const int maxxn = 100000+10;
    typedef long long ll;
    int a,b,gcd;
    ll ans;
    bool isPrime[maxn];
    ll minDiv[maxxn],phi[maxxn],sum[maxxn];
    vector<int> prime,cnt[maxxn],digit[maxxn];
    
    void getPrime(){
        prime.clear();
        memset(isPrime,1,sizeof isPrime);
        for(int i = 2;i < maxn; i++){
            if(isPrime[i]){
                prime.push_back(i);
                for(int j = i*i; j < maxn; j+=i){
                    isPrime[j] = 0;
                }
            }
        }
    }
    
    void getPhi(){
        for(ll i = 1; i < maxxn; i++){
            minDiv[i] = i;
        }
        for(ll i = 2; i*i < maxxn; i++){
            if(minDiv[i]==i){
                for(int j = i*i; j < maxxn; j += i){
                    minDiv[j] = i;
                }
            }
        }
        phi[1] = 1;
        sum[1] = 1;
        for(ll i = 2; i < maxxn; i++){
            phi[i] = phi[i/minDiv[i]];
            if((i/minDiv[i])%minDiv[i]==0){
                phi[i] *= minDiv[i];
            }else{
                phi[i] *= minDiv[i]-1;
            }
            sum[i] = phi[i]+sum[i-1];
        }
    }
    
    void getDigit(){
        for(ll i = 1; i < maxxn; i++){
            int x = i;
            for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
                if(x%prime[j]==0){
                    digit[i].push_back(prime[j]);
                    int t = 0;
                    while(x%prime[j]==0){
                        t++;
                        x /= prime[j];
                    }
                    cnt[i].push_back(t);
                }
            }
            if(x!=1){
                digit[i].push_back(x);
                cnt[i].push_back(1);
            }
        }
    }
    
    int main(){
        getPrime();
        getPhi();
        getDigit();
        int ncase,T=1;
        cin >> ncase;
        while(ncase--){
            int t1,t2;
            scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
            if(gcd==0){
                printf("Case %d: 0
    ",T++,ans);
                continue;
            }else{
                if(a > b) swap(a,b);
                a /= gcd,b /= gcd;
                ans = sum[a];
                for(ll i = a+1; i <= b; i++){
                    int d = digit[i].size();
                    int t = 0;
                    vector<int> di;
                    for(int k = 1; k < (1<<d); k++){
                        di.clear();
                        for(int f = 0; f < d; f++){
                            if(k&(1<<f)){
                                di.push_back(digit[i][f]);
                            }
                        }
                        int ji = 1;
                        for(int f = 0; f < di.size(); f++){
                            ji *= di[f];
                        }
                        if(di.size()%2==0){
                            t -= a/ji;
                        }else{
                            t += a/ji;
                        }
                    }
                    ans += a-t;
                }
                printf("Case %d: ",T++);
                cout<<ans<<endl;
            }
    
        }
        return 0;
    }
    


  • 相关阅读:
    回顾2011,展望我的2012
    查看MS SQL SERVER数据库中表的大小
    MS SQL SERVER数字格式化显示,每三位加逗号
    MS SQL Server 保留一行,清除多余冗余数据
    ASP.NET Webform和ASP.NET MVC的区别
    Firefox的刷新功能与Safari,IE的差距
    TIOBE如何计算编程语言的排行?
    如何让ComboBox的下拉列表宽度自适应内容的宽度
    如何启用.NET中的Fusion Log
    JavaScript的clone函数的实现及应用条件
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/4337325.html
Copyright © 2011-2022 走看看