zoukankan      html  css  js  c++  java
  • DataFrame衍生新特征操作

    1.DataFrame中某一列的值衍生为新的特征

    #将LBL1特征的值衍生为one-hot形式的新特征
    piao=df_train_log.LBL1.value_counts().index
    #先构造一个临时的df
    df_tmp=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
    #将所有的新特征列都置为0
    for i in piao:
        df_tmp['PIAO_'+i]=0
    
    #进行分组便利,有这个特征就置为1,原数据每个USRID有多条记录,所以分组统计
    group=df_train_log.groupby(['USRID'])
    for k in group.groups.keys():
        t = group.get_group(k)
        id=t.USRID.value_counts().index[0]
        tmp_list=t.LBL1.value_counts().index
        for j in tmp_list:
            df_tmp['PIAO_'+j].loc[df_tmp.USRID==id]=1

     2.分组统计,选出同一USRID下该变量中出现次数最多的值项

    group=df_train_log.groupby(['USRID'])
    lt=[]
    list_max_lbl1=[]
    list_max_lbl2=[]
    list_max_lbl3=[]
    for k in group.groups.keys():
        t = group.get_group(k)
    #通过value_counts找出出现次数最多的项 argmx
    = np.argmax(t['EVT_LBL'].value_counts()) lbl1_max=np.argmax(t['LBL1'].value_counts()) lbl2_max=np.argmax(t['LBL2'].value_counts()) lbl3_max=np.argmax(t['LBL3'].value_counts()) list_max_lbl1.append(lbl1_max) list_max_lbl2.append(lbl2_max) list_max_lbl3.append(lbl3_max)
    #只留下出现次数最多的项 c
    = t[t['EVT_LBL']==argmx].drop_duplicates('EVT_LBL')
    #放入list中 lt.append(c)
    #构造一个新的df df_train_log_new
    = pd.concat(lt)
    #另外又构造了三个特征,LBL1-LBL3分别出现次数最多的项 df_train_log_new[
    'LBL1_MAX']=list_max_lbl1 df_train_log_new['LBL2_MAX']=list_max_lbl2 df_train_log_new['LBL3_MAX']=list_max_lbl3

     3.衍生出某天是否发生的ont-hot新特征

    #创造临时df,星期三,星期六,星期七,都默认置为0
    df_day=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
    df_day['weekday_3']=0
    df_day['weekday_6']=0
    df_day['weekday_7']=0
    
    #分组统计,有就置为1,没有置为0
    group=df_train_log.groupby(['USRID'])
    for k in group.groups.keys():
        t = group.get_group(k)
        id=t.USRID.value_counts().index[0]
        tmp_list=t.occ_dayofweek.value_counts().index
        for j in tmp_list:
            if j==3:
                df_day['weekday_3'].loc[df_tmp.USRID==id]=1
            elif j==6:
                df_day['weekday_6'].loc[df_tmp.USRID==id]=1
            elif j==7:
                df_day['weekday_7'].loc[df_tmp.USRID==id]=1

     

    4.查看用户一共停留在APP上多少秒,共有几天看了APP

    #首先将日期转化为时间戳,并赋予一个新特征
    tmp_list=[]
    for i in df_train_log.OCC_TIM:
        d=datetime.datetime.strptime(str(i),"%Y-%m-%d %H:%M:%S")
        evt_time = time.mktime(d.timetuple())
        tmp_list.append(evt_time)
    
    df_train_log['time']=tmp_list
    
    #每下一行减去上一行,得到app停留时间
    df_train_log['diff_time']=df_train_log.time-df_train_log.time.shift(1)
    
    #构造一个新的dataFrame,分组得到查看app的天数
    df_time=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
    #有几天查看
    df_time['days']=0
    group=df_train_log.groupby(['USRID'])
    for k in group.groups.keys():
        t = group.get_group(k)
        id=set(t.USRID).pop()
        df_time['days'].loc[df_time.USRID==id]= len(t.occ_day.value_counts().index)
    
    #去掉一些异常时间戳,比如间隔两天的相减,肯定不合适,na的也去掉了
    df_train_log=df_train_log[(df_train_log.diff_time>0)&(df_train_log.diff_time<8000)]
    #累计停留时间
    group_stayTime=df_train_log['diff_time'].groupby(df_train_log['USRID']).sum()
    #创造新的df
    df_tmp=pd.DataFrame({'USRID':list(group_stayTime.index.values),'stay_time':list(group_stayTime.values)})
    
    #合并成一个新的df
    df=pd.merge(df_time,df_tmp,on=['USRID'],how='left')
    #合并后,缺失的停留时间,置为0
    df.fillna(0,axis=1,inplace=True)

  • 相关阅读:
    ng-深度学习-课程笔记-1: 介绍深度学习(Week1)
    java发送http请求和多线程
    Spring Cloud Eureka注册中心(快速搭建)
    Spring boot集成Swagger2,并配置多个扫描路径,添加swagger-ui-layer
    springboot在idea的RunDashboard如何显示出来
    Oracle 中select XX_id_seq.nextval from dual 什么意思呢?
    mysql类似to_char()to_date()函数mysql日期和字符相互转换方法date_f
    MySQL的Limit详解
    HikariCP 个人实例
    NBA-2018骑士季后赛
  • 原文地址:https://www.cnblogs.com/gczr/p/9229872.html
Copyright © 2011-2022 走看看