zoukankan      html  css  js  c++  java
  • 数据分析 大数据之路 六 matplotlib 绘图工具

     

    散点图

    #导入必要的模块
    import numpy as np
    import matplotlib.pyplot as plt
    #产生测试数据
    x = np.arange(1,10)
    y = x
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    #设置标题
    ax1.set_title('Scatter Plot')
    #设置X轴标签
    plt.xlabel('X')
    #设置Y轴标签
    plt.ylabel('Y')
    #画散点图
    ax1.scatter(x,y,c = 'r',marker = 'o')
    #设置图标
    plt.legend('x1')
    #显示所画的图
    plt.show()
    

      

    折线图

    import numpy as np
    import matplotlib.pyplot as plt
    
    x = np.linspace(0, 2 * np.pi, 10)
    y1, y2 = np.sin(x), np.cos(x)
    
    plt.plot(x, y1, 'ro-')
    plt.plot(x, y2, 'g*:', ms=10)
    plt.show()
    

      

    柱状图

    import numpy as np
    import matplotlib.pyplot as plt
    size = 5
    a = np.random.random(size)
    b = np.random.random(size)
    c = np.random.random(size)
    d = np.random.random(size)
    x = np.arange(size)
    
    total_width, n = 0.8, 3     # 有多少个类型,只需更改n即可
    width = total_width / n
    x = x - (total_width - width) / 2
    
    plt.bar(x, a,  width=width, label='a')
    plt.bar(x + width, b, width=width, label='b')
    plt.bar(x + 2 * width, c, width=width, label='c')
    plt.legend()
    plt.show()
    

      

    饼状图

    import numpy as np
    import matplotlib.pyplot as plt
     
    labels = 'A', 'B', 'C', 'D'
    fracs = [15, 30.55, 44.44, 10]
    explode = [0, 0.1, 0, 0] # 0.1 凸出这部分,
    plt.axes(aspect=1)  # set this , Figure is round, otherwise it is an ellipse
    #autopct ,show percet
    plt.pie(x=fracs, labels=labels, explode=explode,autopct='%3.1f %%',
            shadow=True, labeldistance=1.1, startangle = 90,pctdistance = 0.6
     
            )
    '''
    labeldistance,文本的位置离远点有多远,1.1指1.1倍半径的位置
    autopct,圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数
    shadow,饼是否有阴影
    startangle,起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看
    pctdistance,百分比的text离圆心的距离
    patches, l_texts, p_texts,为了得到饼图的返回值,p_texts饼图内部文本的,l_texts饼图外label的文本
    '''
     
    plt.show()
    

      

    气泡图

    import pandas as pd
    from matplotlib import pyplot as plt
    crime=pd.read_csv("crimeRatesByState2005.csv")
    fig,ax=plt.subplots(figsize=(10,5))
    
    crime=crime[1:]
    population=crime["population"].values
    state=crime["state"].values
    murder=crime["murder"].values
    burglary=crime["burglary"].values
    
    ax.scatter(murder,burglary,s=population/40000,alpha=0.6)
    ax.set(xlim=(0,11),ylim=(200,1300),
           xlabel="Murder per 100,000 population",
           ylabel="Burglary per 100,000 population",
           title="Murder & Burglary in USA")
    for i,j,z in zip(murder,burglary,state):
        ax.text(x=i-0.3,y=j-0.1,s=z,fontsize=7)
    ax.spines["top"].set_visible(False)
    ax.spines["left"].set_visible(False)
    ax.spines["right"].set_visible(False)
    
    plt.show()
    

      

     雷达图

    # encoding: utf-8
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    plt.rcParams['font.sans-serif'] = ['KaiTi']  # 显示中文
    labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) # 标签
    dataLenth = 4  # 数据长度
    data_radar = np.array([63, 1, 15, 13]) # 数据
    angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False)  # 分割圆周长
    data_radar = np.concatenate((data_radar, [data_radar[0]]))  # 闭合
    angles = np.concatenate((angles, [angles[0]]))  # 闭合
    plt.polar(angles, data_radar, 'bo-', linewidth=1)  # 做极坐标系
    plt.thetagrids(angles * 180/np.pi, labels)  # 做标签
    plt.fill(angles, data_radar, facecolor='r', alpha=0.25)# 填充
    plt.ylim(0, 70)
    plt.title(u'2018的绝地求生战绩')
    plt.show()
    

      

     


    import pandas as pd import numpy as np import matplotlib.pyplot as plt # 用来正常显示中文标签 plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示负号 plt.rcParams['axes.unicode_minus']=False # 读取本地 unrate.csv 文件 unrate = pd.read_csv('unrate.csv') print(unrate.head()) # pd.to_datetime() 将数据转换成datetime类型 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) # plt.plot()画折线图 plt.plot() # plt.show()显示图形 plt.show()

      

           DATE  VALUE
    0  1948/1/1    3.4
    1  1948/2/1    3.8
    2  1948/3/1    4.0
    3  1948/4/1    3.9
    4  1948/5/1    3.5
             DATE  VALUE
    0  1948-01-01    3.4
    1  1948-02-01    3.8
    2  1948-03-01    4.0
    3  1948-04-01    3.9
    4  1948-05-01    3.5
    5  1948-06-01    3.6
    6  1948-07-01    3.6
    7  1948-08-01    3.9
    8  1948-09-01    3.8
    9  1948-10-01    3.7
    10 1948-11-01    3.8
    11 1948-12-01    4.0

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei'] 
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus']=False  
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    
    first_twelve = unrate[0:12]
    print (first_twelve)
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    plt.show()
    

      

             DATE  VALUE
    0    1948/1/1    3.4
    1    1948/2/1    3.8
    2    1948/3/1    4.0
    3    1948/4/1    3.9
    4    1948/5/1    3.5
    5    1948/6/1    3.6
    6    1948/7/1    3.6
    7    1948/8/1    3.9
    8    1948/9/1    3.8
    9   1948/10/1    3.7
    10  1948/11/1    3.8
    11  1948/12/1    4.0

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei'] 
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus']=False  
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    
    first_twelve = unrate[0:12]
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    
    # plt.xticks设置x轴坐标,rotation设置x刻度旋转角度
    plt.xticks(rotation=45)
    #print (help(plt.xticks))
    plt.show()
    

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei'] 
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus']=False  
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    
    first_twelve = unrate[0:12]
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    
    plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
    # plt.xticks设置x轴坐标,rotation设置x刻度旋转角度
    plt.xticks(rotation=90)
    
    # plt.xlabel()设置x轴标题
    #plt.xlabel('Month')
    plt.xlabel('月份')
    #plt.ylabel('Unemployment rate')
    plt.ylabel('失业率')
    # plt.title()设置标题
    plt.title('1948年失业率走势')
    plt.show()
    

      

    2.子图

    在一张纸上画多张图

    import matplotlib.pyplot as plt
    # 创建画板
    fig = plt.figure()
    
    #.add_subplot添加子图
    ax1 = fig.add_subplot(2,2,1)
    ax2 = fig.add_subplot(2,2,2)
    #ax3 = fig.add_subplot(2,2,3)
    ax4 = fig.add_subplot(2,2,4)
    #ax4 = fig.add_subplot(224)
    plt.show()
    

      

    import matplotlib.pyplot as plt
    import numpy as np
    
    # 创建画板
    fig = plt.figure()
    #fig = plt.figure(figsize=(8, 15))#figsize=(8, 15)设置画板大小
    
    #.add_subplot添加子图
    
    ax1 = fig.add_subplot(2,1,1)
    ax2 = fig.add_subplot(2,1,2)
    ax1.plot(np.random.randint(1,5,5), np.arange(5))
    # np.random.randint(low,high,size),生成在[low,high)随机整数,low默认是0,size是元素个数,size是元组时,生成矩阵
    ax2.plot(np.arange(10)*3, np.arange(10))
    plt.show()
    

      

    # 随机生成 5 个整数的 5 个整数
    print(np.random.randint(1,5,5))
    
    # 随机生成 1 到 5 的整数, 3 行 3 列
    print(np.random.randint(1,5,(3,3)))
    

      

    [2 3 2 2 2]
    [[4 4 2]
     [1 2 4]
     [1 3 2]]
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus'] = False
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    
    # dt.month获取datetime类型值的月份
    unrate['MONTH'] = unrate['DATE'].dt.month
    
    fig = plt.figure(figsize=(6,3))
    
    plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='r')
    plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue')
    
    plt.show()
    

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus'] = False
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    
    # dt.month获取datetime类型值的月份
    unrate['MONTH'] = unrate['DATE'].dt.month
    
    
    fig = plt.figure(figsize=(10, 6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    for i in range(5):
        start_index = i * 12
        end_index = (i + 1) * 12
        subset = unrate[start_index:end_index]
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i])  # c设置颜色
    
    plt.show()
    

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus'] = False
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    
    # dt.month获取datetime类型值的月份
    unrate['MONTH'] = unrate['DATE'].dt.month
    
    
    fig = plt.figure(figsize=(10,6))
    colors = ['red', 'blue', 'green', 'orange', 'black']
    for i in range(5):
        start_index = i*12
        end_index = (i+1)*12
        subset = unrate[start_index:end_index]
        label = str(1948 + i)
        # linewidth设置线宽
        plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label,linewidth=10)
    plt.legend(loc='upper left')
    plt.xticks(size=15)
    plt.yticks(size=15)
    plt.xlabel('Month, Integer',size=20)
    
    plt.ylabel('Unemployment Rate, Percent')
    plt.title('Monthly Unemployment Trends, 1948-1952')
    
    plt.show()
    

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus'] = False
    
    # 读取本地 unrate.csv 文件
    unrate = pd.read_csv('unrate.csv')
    
    
    unrate['DATE'] = pd.to_datetime(unrate['DATE'])
    
    # dt.month获取datetime类型值的月份
    unrate['MONTH'] = unrate['DATE'].dt.month
    
    
    plt.figure(figsize=(10,6))
    x = np.arange(-2*np.pi,2*np.pi,0.01)
    #x = np.arange(-2*np.pi,2*np.pi,0.01)
    x1 = np.arange(-2*np.pi,2*np.pi,0.2)
    y = np.sin(3*x1)/x1
    y2 = np.sin(2*x)/x
    y3 = np.sin(x)/x
    
    # linestyle设置线的风格,marker设置点的风格
    plt.plot(x1,y,c='b',linestyle='--',marker='^')
    plt.plot(x,y2,c='r',linestyle='-.')
    plt.plot(x,y3,c='g')
    
    ax = plt.gca()  # 获取Axes对象
    #plt.gca().spines[]图的边框,set_color()设置边框的颜色
    #ax.spines['right'].set_color('none')
    
    #ax.spines['top'].set_color('none')
    #ax.xaxis.set_ticks_position('bottom')
    # ax.spines['bottom']获取下边框,即x轴,set_position设置轴的位置
    #ax.spines['bottom'].set_position(('data',0))
    #ax.yaxis.set_ticks_position('left')
    
    # #ax.spines['left']获取左边框,即y轴
    #ax.spines['left'].set_position(('data',0))
    
    # 设置要显示的刻度值
    #plt.xticks([-2*np.pi,-np.pi,0,np.pi,2*np.pi])
    
    # 设置要显示的刻度值,并将其进行替换成自定义字符串
    #plt.xticks([-2*np.pi,-np.pi,0,np.pi,2*np.pi],['-2π','π','0','π','2π'],size=15)
    
    # 设置x轴坐标范围
    #plt.xlim((-np.pi,np.pi))
    
    # 设置y轴坐标范围
    #plt.ylim((0,3))
    plt.show()
    

     3.柱形图

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from numpy import arange
    li = [1.2, 2.2, 1.5, 4.5, 2.5] bar_positions = arange(5) + 1 print (bar_positions) print (type(bar_positions)) plt.figure(figsize=(10,6)) # plt.bar ()画柱状图 plt.bar(bar_positions, li, 0.5) plt.show()

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from numpy import arange
    
    num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
    li = [1.2, 2.2, 1.5, 4.5, 2.5]
    bar_positions = arange(5) + 1
    print (bar_positions)
    
    
    plt.figure(figsize=(10,6))
    plt.bar(bar_positions, li, 0.5,color=['r','g','b'])
    plt.xticks(bar_positions,num_cols,rotation=0, size=10)
    plt.xlabel('Rating Source')
    plt.ylabel('Average Rating')
    plt.title('Average User Rating For Avengers: Age of Ultron (2015)')
    for x,y in zip(bar_positions,li):#设置在柱子上显示文字注释
        plt.text(x,y,'%.2f'%y,ha="center", va="bottom",size=14)
        #plt.text()设置添加图中文本注释,依次传入坐标和字符串内容,size设置字的大小
        #ha设置horizontalalignment水平对齐方式,va设置verticalalignment:垂直对齐方式
    plt.show()
    

      

     

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from numpy import arange
    
    num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
    li = [1.2, 2.2, 1.5, 4.5, 2.5]
    bar_positions = arange(5) + 1
    print (bar_positions)
    
    
    bar_positions = arange(5) + 1
    plt.figure(figsize=(10,6))
    plt.barh(bar_positions,li, 0.5,color=['r','orange','y','g','k'])
    plt.yticks(bar_positions,num_cols,rotation=0, size=10)
    plt.xlabel('Average Rating')
    plt.ylabel('Rating Source')
    plt.title('Average User Rating For Avengers: Age of Ultron (2015)')
    for x,y in zip(li,bar_positions):#设置在柱子上显示文字注释
        plt.text(x,y,'%.2f'%x,ha="left", va="center",size=14)
    plt.show()
    

      

    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from numpy import arange
    
    
    # 用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei'] 
    # 用来正常显示负号
    plt.rcParams['axes.unicode_minus']=False  
    
    pdData = pd.read_csv('pandas作业.csv')
    positive = pdData[pdData['Admitted'] == 1] 
    negative = pdData[pdData['Admitted'] == 0] 
    
    fig = plt.figure(figsize=(10,5))
    plt.scatter(positive['Exam1'], positive['Exam2'], s=30, c='b', marker='o', label='通过') 
    # s设置点的大小,c设置颜色,marker设置点的形状,label设置图例
    plt.scatter(negative['Exam1'], negative['Exam2'], s=30, c='r', marker='x', label='淘汰')
    plt.legend()#显示图例
    plt.xlabel('科目1分数')#设置横坐标标题
    plt.ylabel('科目2分数')
    

      

     

  • 相关阅读:
    Constraint.constant动画效果
    poj3469 Dual Core CPU --- 最小割
    开发Blog整理
    Android 四大组件学习之BroadcastReceiver四
    在光标处插入指定文本(支持文本域和文本框)
    图片显示插件
    Extjs4 自定义组件
    Windows英文版GitHub客户端使用操作流程图文攻略教程现没中文版
    innerHTML和innerText怎么区分
    button和input type=button的区别及注意事项
  • 原文地址:https://www.cnblogs.com/gdwz922/p/10653099.html
Copyright © 2011-2022 走看看